基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在推导加权最小二乘支持向量机数学模型的基础上,基于启发式学习算法并结合滚动窗的思想,提出基于滚动窗法最小二乘支持向量机的稳健预测模型,为了缩短模型的预测运行时间,将启发式算法进行改进后,采用迭代求逆方法,在不丧失预测精度的基础上,很大程度地缩短预测时间,最后通过仿真实例验证这个模型可以成功抑制奇异点,实现稳健预测并取得良好效果.
推荐文章
基于最小二乘支持向量机的复杂装备故障预测模型研究
故障预测模型
回归算法
最小二乘支持向量机
基于最小二乘支持向量机的蜡沉积速率预测
最小二乘支持向量机
蜡沉积速率
预测
模型
模型精度
基于最小二乘支持向量机的短期负荷预测模型
最小二乘支持向量机
神经网络
短期负荷预测
时间序列预测
稀疏最小二乘支持向量机及其应用研究
最小二乘支持向量机
核偏最小二乘辨识
智能建模
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于滚动窗法最小二乘支持向量机的稳健预测模型
来源期刊 模式识别与人工智能 学科
关键词 加权最小二乘支持向量机(WLS-SVM) 滚动窗 稳健 奇异点
年,卷(期) 2008,(1) 所属期刊栏目 论文与报告
研究方向 页码范围 1-5
页数 5页 分类号
字数 2570字 语种 中文
DOI 10.3969/j.issn.1003-6059.2008.01.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙健国 南京航空航天大学能源与动力工程学院 116 2147 24.0 38.0
2 赵永平 南京航空航天大学能源与动力工程学院 11 129 7.0 11.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (21)
同被引文献  (61)
二级引证文献  (29)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(2)
  • 引证文献(2)
  • 二级引证文献(0)
2010(4)
  • 引证文献(4)
  • 二级引证文献(0)
2011(1)
  • 引证文献(0)
  • 二级引证文献(1)
2012(6)
  • 引证文献(2)
  • 二级引证文献(4)
2013(7)
  • 引证文献(5)
  • 二级引证文献(2)
2014(9)
  • 引证文献(2)
  • 二级引证文献(7)
2015(3)
  • 引证文献(1)
  • 二级引证文献(2)
2016(3)
  • 引证文献(2)
  • 二级引证文献(1)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(7)
  • 引证文献(2)
  • 二级引证文献(5)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
加权最小二乘支持向量机(WLS-SVM)
滚动窗
稳健
奇异点
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
模式识别与人工智能
月刊
1003-6059
34-1089/TP
16开
中国科学院合肥智能机械研究所安徽合肥董铺岛合肥1130信箱
26-69
1989
chi
出版文献量(篇)
2928
总下载数(次)
8
总被引数(次)
30919
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导