基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文简述了支持向量的回归分析、支持向量机自回归预测模型结构及预测方法,利用黄河唐乃亥站47年的径流资料,采用最小二乘支持向量机方法对径流进行了模拟预测,并与B-P神经网络方法进行了对比分析,其计算结果相对略好.
推荐文章
基于最小二乘支持向量机的蜡沉积速率预测
最小二乘支持向量机
蜡沉积速率
预测
模型
模型精度
基于最小二乘支持向量机的复杂装备故障预测模型研究
故障预测模型
回归算法
最小二乘支持向量机
基于最小二乘支持向量机的铁路客运量预测研究
铁路客运量
最小二乘支持向量机
预测模型
基于灰色最小二乘支持向量机的边坡位移预测
边坡位移
灰色模型
最小二乘支持向量机
遗传算法
时间序列
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于最小二乘支持向量机的龙羊峡径流预测
来源期刊 水文 学科 地球科学
关键词 支持向量机 径流预测 BP神经网络 龙羊峡
年,卷(期) 2008,(4) 所属期刊栏目 技术应用
研究方向 页码范围 29-30,23
页数 3页 分类号 P338+.9
字数 2217字 语种 中文
DOI 10.3969/j.issn.1000-0852.2008.04.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 武晟 西安理工大学水电学院 11 148 7.0 11.0
2 TAO Feng-ling 西安理工大学水电学院 1 8 1.0 1.0
3 YU Sheng-cai 西安理工大学水电学院 1 8 1.0 1.0
4 肖博 西安理工大学水电学院 3 29 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (99)
参考文献  (3)
节点文献
引证文献  (8)
同被引文献  (37)
二级引证文献  (24)
1982(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(5)
  • 引证文献(5)
  • 二级引证文献(0)
2011(4)
  • 引证文献(0)
  • 二级引证文献(4)
2012(3)
  • 引证文献(1)
  • 二级引证文献(2)
2013(4)
  • 引证文献(0)
  • 二级引证文献(4)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(5)
  • 引证文献(0)
  • 二级引证文献(5)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
支持向量机
径流预测
BP神经网络
龙羊峡
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水文
双月刊
1000-0852
11-1814/P
大16开
北京宣武区白广路二条2号
2-430
1956
chi
出版文献量(篇)
2533
总下载数(次)
6
总被引数(次)
29769
论文1v1指导