基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
电力系统短期负荷预测是一项非常重要的工作,准确的短期负荷预测对于电力系统经济、安全、可靠的运行具有特别重要的意义.随着电力系统的日趋复杂化,特别是电力市场的逐步深入,短期负荷预测被赋予了更高的要求.提出了基于负荷日周期性进行前后向外推的数据预处理新方法,为短期负荷预测模型利用这些历史数据奠定了基础.最小二乘支持向量机是新一代机器学习方法,将其应用于电力系统短期负荷预测,在充分利用日周期性和同时刻负荷相近性的基础上,提出了基于最小二乘支持向量机回归算法(LSSVR)的短期负荷预测点模型.该模型通过采用不同天同时刻的负荷样本训练LSSVR来获取负荷的最优线性回归函数,实现了在最小化负荷样本点误差的同时,缩小模型泛化误差的上界,获取了较好的负荷预测性能.
推荐文章
基于最小二乘支持向量机的短期负荷预测模型
最小二乘支持向量机
神经网络
短期负荷预测
时间序列预测
最小二乘支持向量机的短期负荷多尺度预测模型
短期负荷
多尺度预测
多孔算法
最小二乘支持向量机
NRS和PSO算法优化最小二乘支持向量机的短期电力负荷预测
短期电力负荷预测
邻域关系
属性约简
最小二乘支持向量机
粒子群算法
预测精度
混沌最小二乘支持向量机的短期风功率预测
混沌
LS-SVM
风功率预测
相空间重构
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 最小二乘支持向量机短期负荷预测研究
来源期刊 四川电力技术 学科 工学
关键词 电力系统 短期负荷预测 最小二乘支持向量机
年,卷(期) 2009,(z1) 所属期刊栏目 四川大学专栏
研究方向 页码范围 11-15
页数 5页 分类号 TM714
字数 4312字 语种 中文
DOI 10.3969/j.issn.1003-6954.2009.z1.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘俊勇 四川大学电气信息学院 423 6701 41.0 61.0
2 侯贺飞 四川大学电气信息学院 3 34 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (120)
参考文献  (6)
节点文献
引证文献  (7)
同被引文献  (20)
二级引证文献  (36)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(2)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(2)
  • 引证文献(0)
  • 二级引证文献(2)
2013(9)
  • 引证文献(1)
  • 二级引证文献(8)
2014(6)
  • 引证文献(0)
  • 二级引证文献(6)
2015(3)
  • 引证文献(0)
  • 二级引证文献(3)
2016(3)
  • 引证文献(2)
  • 二级引证文献(1)
2017(7)
  • 引证文献(1)
  • 二级引证文献(6)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
2020(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
电力系统
短期负荷预测
最小二乘支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川电力技术
双月刊
1003-6954
51-1315/TM
大16开
四川省成都市高新区锦晖西二街16号四川电科院媒体业务中心
1978
chi
出版文献量(篇)
3021
总下载数(次)
2
总被引数(次)
10921
论文1v1指导