基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了克服现有单项预测技术对不同交通流状况的局限性,提出一种新的短时交通流智能混合预测模型.该智能混合预测模型包括3个子模型:历史平均模型、人工神经网络模型和模糊综合模型.历史平均模型以历史数据为基础,利用一次指数平滑法良好的静态稳定特性,对交通流量进行预测.人工神经网络模型采用常见的由S函数神经元组成的1.5层前馈神经网络,由于人工神经网络具有强大的动态非线性映射能力,该模型对动态交通流量的预测具有较高的精度和满意度.根据上述2个单项模型的特点,为了充分利用它们对不同交通状况的适应性,进一步提高整体预测效果,采用模糊逻辑来综合这2个单项模型的输出,并把模糊综合模型的输出作为整个智能混合模型的最终交通流量预测值.实际应用结果表明,该混合模型的预测精度高于单项预测模型各自单独使用时的精度,发挥了2种模型各自的优势,是短时交通流预测的一种有效方法.
推荐文章
短时交通流预测方法研究
相关分析
支持向量机
交通流预测
智能交通
基于深度学习的短时交通流预测
交通流预测
深度学习
短时交通流
支持向量回归
利用模糊时间序列进行短时交通流预测
短时交通流预测
模糊时间序列
时变模糊时间序列
时不变模糊时间序列
基于模糊神经网络的短时交通流预测方法研究
模糊神经网络
短时交通流
预测方法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 短时交通流智能混合预测技术
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 短时交通流预测 一次指数平滑 人工神经网络 模糊逻辑
年,卷(期) 2010,(8) 所属期刊栏目
研究方向 页码范围 1473-1478,1483
页数 7页 分类号 TP393.04|TN915.04
字数 语种 中文
DOI 10.3785/j.issn.1008-973X.2010.08.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 沈国江 35 675 15.0 25.0
2 任沙浦 10 57 4.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (201)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1969(1)
  • 参考文献(1)
  • 二级参考文献(0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(1)
  • 二级参考文献(1)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(7)
  • 参考文献(1)
  • 二级参考文献(6)
2005(8)
  • 参考文献(1)
  • 二级参考文献(7)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短时交通流预测
一次指数平滑
人工神经网络
模糊逻辑
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
国家高技术研究发展计划(863计划)
英文译名:The National High Technology Research and Development Program of China
官方网址:http://www.863.org.cn
项目类型:重点项目
学科类型:信息技术
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导