基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
生物质的热值与其组成成分有关,基于此,应用最小二乘支持向量机方法建立了生物质热值预测的有效模型.并利用Biomass Feedstock Composition and Properties Database数据库提供的数据进行了测试.以该数据库的部分生物质的固定碳、挥发分和灰分含量作为输入,以相应的热值作为输出,训练最小二乘支持向量机.训练完成后,用剩余的生物质进行测试.测试结果表明,预测方法准确,速度较快.与神经网络方法相比,基于最小二乘支持向量机的生物质的热值预测方法更有效.
推荐文章
基于最小二乘支持向量机的蜡沉积速率预测
最小二乘支持向量机
蜡沉积速率
预测
模型
模型精度
基于最小二乘支持向量机的复杂装备故障预测模型研究
故障预测模型
回归算法
最小二乘支持向量机
基于最小二乘支持向量机的铁路客运量预测研究
铁路客运量
最小二乘支持向量机
预测模型
基于灰色最小二乘支持向量机的边坡位移预测
边坡位移
灰色模型
最小二乘支持向量机
遗传算法
时间序列
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于最小二乘支持向量机的生物质热值预测
来源期刊 可再生能源 学科 工学
关键词 最小二乘支持向量机 生物质 热值
年,卷(期) 2010,(2) 所属期刊栏目 研究与试验
研究方向 页码范围 80-82
页数 分类号 TK6
字数 1501字 语种 中文
DOI 10.3969/j.issn.1671-5292.2010.02.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 洪丽华 6 15 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (13)
参考文献  (4)
节点文献
引证文献  (4)
同被引文献  (7)
二级引证文献  (3)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(3)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
最小二乘支持向量机
生物质
热值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
可再生能源
月刊
1671-5292
21-1469/TK
大16开
辽宁省营口市西市区银泉街65号
8-61
1983
chi
出版文献量(篇)
4935
总下载数(次)
14
论文1v1指导