基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
最小二乘支持向量机(LS-SVM)作为一种新颖的人工智能技术,已越来越广泛地运用于各个学科领域.该文阐述了最小二乘支持向量机的主要思想和基本算法;结合统计学习理论和算例分析了模型参数对模型精度、复杂度和计算量等的影响,为模型参数的确定提供了理论参考;还提出了最小二乘支持向量机的一种改进算法,通过工程实例对比了基于改进算法和原算法的最小二乘支持向量机模型的性能.算例表明该改进算法可以有效地提高模型的整体性能,便于模型在工程上推广使用.
推荐文章
最小二乘支持向量机的参数优化算法研究
最小二乘支持向量机
参数优化
水下焊接
熔深预测
最小二乘支持向量机交通事件检测算法
交通工程
事件检测
最小二乘支持向量机
分类
稀疏最小二乘支持向量机及其应用研究
最小二乘支持向量机
核偏最小二乘辨识
智能建模
基于最小二乘支持向量机的多属性决策
多属性决策
最小二乘支持向量机
效用函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 最小二乘支持向量机的算法研究
来源期刊 清华大学学报(自然科学版) 学科 工学
关键词 最小二乘支持向量机 支持向量 精度 复杂度 改进算法
年,卷(期) 2010,(7) 所属期刊栏目 热能工程
研究方向 页码范围 1063-1066,1071
页数 5页 分类号 TK1
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (1807)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
最小二乘支持向量机
支持向量
精度
复杂度
改进算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
清华大学学报(自然科学版)
月刊
1000-0054
11-2223/N
大16开
北京市海淀区清华园清华大学
2-90
1915
chi
出版文献量(篇)
7846
总下载数(次)
26
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导