基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
将主成分分析及BP神经网络模型引入到道路交通安全性预测中,从微观层面分析影响交通事故的因素,重点分析道路参数,并形成文中的原始数据.对原始数据进行主成分分析,将结果作为神经网络模型的输入,建立BP神经网络模型,对道路交通安全性进行预测.结果表明,基于主成分分析的BP神经网络模型比一般BP神经网络模型精度更高,而且从微观的层面进行分析可以得到道路参数对交通事故的影响.
推荐文章
基于BP神经网络的城市交通流预测研究
非线性
BP神经网络
交通流预测
人工智能
基于PSO的BP神经网络-Markov船舶交通流量预测模型
船舶交通流量预测
BP神经网络
马尔科夫模型(Markov模型)
粒子群优化(PSO)
基于ARIMA-BP神经网络的船舶交通事故预测
船舶交通事故
组合预测方法
简单加权
残差优化
基于BP神经网络的网络安全态势预测研究
网络安全态势
层次分析法
预测研究
BP神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络的微观交通安全预测方法
来源期刊 交通信息与安全 学科 交通运输
关键词 主成分分析 BP神经网络 道路安全性预测
年,卷(期) 2011,(3) 所属期刊栏目 交通安全
研究方向 页码范围 79-83
页数 分类号 U491
字数 5339字 语种 中文
DOI 10.3963/j.ISSN1674-4861.2011.03.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 马寿峰 天津大学管理与经济学部系统工程研究所 86 1968 23.0 43.0
2 钟石泉 天津大学管理与经济学部系统工程研究所 33 637 14.0 25.0
3 康迪 天津大学管理与经济学部系统工程研究所 3 9 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (35)
参考文献  (6)
节点文献
引证文献  (5)
同被引文献  (6)
二级引证文献  (10)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(3)
  • 二级参考文献(0)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
主成分分析
BP神经网络
道路安全性预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
交通信息与安全
双月刊
1674-4861
42-1781/U
大16开
武汉市武昌和平大道1178号
38-94
1983
chi
出版文献量(篇)
3739
总下载数(次)
14
总被引数(次)
29572
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导