基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于人对图像结构信息的理解对于像素值的噪声干扰具有极强的鲁棒功能,为了增强传统算法针对低质量监控图像的鲁棒性,提出一种基于人工形状语义模型的人脸超分辨率算法.该算法将形状描述成一系列面部特征点的组合,通过人工获取人脸图像形状语义信息,利用形状样本库构建超分辨率代价函数的正则约束项;将图像与形状的系数相关性用于统一重建误差项与形状正则项的变量,并将最速下降法用于优化求解.仿真和实际图像实验结 果都表明,在主客观质量上,文中算法的性能都优于传统算法.
推荐文章
一种用于监控系统中的人脸超分辨率图像重建方法
超分辨率重建
块匹配
图像序列
监控系统
基于马尔可夫网络人脸图像超分辨率非线性算法
人脸图像
超分辨率
马尔可夫网络
非线性搜索
全局重建和位置块残差补偿的人脸图像超分辨率算法
人脸图像
超分辨率
残差补偿
位置块
基于在线字典学习的人脸超分辨率重建
在线字典学习
超分辨率重建
含噪人脸图像
稀疏编码
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 低质量监控图像鲁棒性人脸超分辨率算法
来源期刊 计算机辅助设计与图形学学报 学科 工学
关键词 人脸超分辨率 幻觉脸 主动形状模型 主成分分析 鲁棒性超分辨率
年,卷(期) 2011,(9) 所属期刊栏目 图像与视觉
研究方向 页码范围 1474-1480
页数 分类号 TP391
字数 5117字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡瑞敏 武汉大学国家多媒体软件工程技术研究中心 122 993 17.0 26.0
5 卢涛 武汉大学国家多媒体软件工程技术研究中心 11 108 6.0 10.0
6 韩镇 武汉大学计算机学院 11 41 4.0 6.0
7 兰诚栋 武汉大学国家多媒体软件工程技术研究中心 4 11 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (5)
参考文献  (9)
节点文献
引证文献  (8)
同被引文献  (22)
二级引证文献  (22)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(4)
  • 引证文献(1)
  • 二级引证文献(3)
2014(4)
  • 引证文献(1)
  • 二级引证文献(3)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(7)
  • 引证文献(3)
  • 二级引证文献(4)
2018(7)
  • 引证文献(0)
  • 二级引证文献(7)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
人脸超分辨率
幻觉脸
主动形状模型
主成分分析
鲁棒性超分辨率
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机辅助设计与图形学学报
月刊
1003-9775
11-2925/TP
大16开
北京2704信箱
82-456
1989
chi
出版文献量(篇)
6095
总下载数(次)
15
总被引数(次)
94943
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导