基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对基于云数字特征(期望值、熵值、超熵值)编码的云粒子群算法应用中优化效率低和局部寻优能力较差的问题,提出了两点改进措施:在解空间变换的基础上将局部搜索与全局搜索相结合;依据正态云算子实现粒子的进化学习过程和变异操作.将改进算法应用于多变量函数极值优化问题.仿真结果表明,该改进算法寻优代数小、收敛速度快、效率高,并且具有较好的种群多样性,验证了改进措施的有效性.
推荐文章
一种改进的粒子群算法
粒子群算法
极值
惯性权重
一种改进的多目标粒子群优化算法及其应用
多目标粒子群优化
比例分布
跳数改进机制
多连杆悬架
一种改进的粒子群优化算法
粒子群算法
收敛速度
搜索能力
一种改进的粒子群算法
聚群
粒子群算法
扰动
惯性权重
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进的云粒子群算法及其应用研究
来源期刊 计算机科学 学科
关键词 云模型 优化算法 云粒子群算法 函数优化
年,卷(期) 2012,(z3) 所属期刊栏目 形式化与网络应用
研究方向 页码范围 249-251,255
页数 4页 分类号
字数 5033字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 苏宏升 兰州交通大学自动化与电气工程学院 86 589 13.0 20.0
2 张佩炯 兰州交通大学自动化与电气工程学院 10 37 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (281)
参考文献  (9)
节点文献
引证文献  (5)
同被引文献  (6)
二级引证文献  (6)
1995(4)
  • 参考文献(1)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(4)
  • 参考文献(4)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(3)
  • 引证文献(1)
  • 二级引证文献(2)
2017(4)
  • 引证文献(0)
  • 二级引证文献(4)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
云模型
优化算法
云粒子群算法
函数优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学
月刊
1002-137X
50-1075/TP
大16开
重庆市渝北区洪湖西路18号
78-68
1974
chi
出版文献量(篇)
18527
总下载数(次)
68
总被引数(次)
150664
论文1v1指导