基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
应用最小二乘支持向量机进行短期负荷预测,为了体现离负荷预测点越远对负荷预测精度的影响越不明显,即“近大远小”的原则.对训练样本横向及纵向引入隶属度,并用留一法优化模型参数,实现参数的自适应选择,从而提高预测的精度.利用某区域电网最新的负荷数据进行仿真预测,并与不加权及其它的方法相比较.结果表明,所提出的方法与传统方法相比提高了预测的精度.
推荐文章
基于最小二乘支持向量机的短期负荷预测模型
最小二乘支持向量机
神经网络
短期负荷预测
时间序列预测
最小二乘支持向量机的短期负荷多尺度预测模型
短期负荷
多尺度预测
多孔算法
最小二乘支持向量机
NRS和PSO算法优化最小二乘支持向量机的短期电力负荷预测
短期电力负荷预测
邻域关系
属性约简
最小二乘支持向量机
粒子群算法
预测精度
稀疏最小二乘支持向量机及其应用研究
最小二乘支持向量机
核偏最小二乘辨识
智能建模
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 应用最小二乘支持向量机进行短期负荷预测的研究与实现
来源期刊 河南理工大学学报(自然科学版) 学科 工学
关键词 最小二乘支持向量机 短期负荷预测 双向加权 自适应
年,卷(期) 2013,(3) 所属期刊栏目 机电工程
研究方向 页码范围 327-331
页数 5页 分类号 TM715
字数 3664字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨晓忠 华北电力大学数理学院 40 196 8.0 13.0
2 司梦 华北电力大学电气与电子工程学院 10 43 3.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (105)
共引文献  (130)
参考文献  (8)
节点文献
引证文献  (5)
同被引文献  (13)
二级引证文献  (20)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(10)
  • 参考文献(0)
  • 二级参考文献(10)
2002(13)
  • 参考文献(0)
  • 二级参考文献(13)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(14)
  • 参考文献(0)
  • 二级参考文献(14)
2005(14)
  • 参考文献(0)
  • 二级参考文献(14)
2006(11)
  • 参考文献(0)
  • 二级参考文献(11)
2007(10)
  • 参考文献(1)
  • 二级参考文献(9)
2008(8)
  • 参考文献(1)
  • 二级参考文献(7)
2009(5)
  • 参考文献(3)
  • 二级参考文献(2)
2010(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(6)
  • 引证文献(4)
  • 二级引证文献(2)
2016(3)
  • 引证文献(0)
  • 二级引证文献(3)
2017(5)
  • 引证文献(0)
  • 二级引证文献(5)
2018(4)
  • 引证文献(0)
  • 二级引证文献(4)
2019(4)
  • 引证文献(0)
  • 二级引证文献(4)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
最小二乘支持向量机
短期负荷预测
双向加权
自适应
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河南理工大学学报(自然科学版)
双月刊
1673-9787
41-1384/N
16开
河南省焦作市世纪大道2001号
3891
1981
chi
出版文献量(篇)
3451
总下载数(次)
5
总被引数(次)
20072
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导