基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的基于关联规则算法的图像自动标注存在“锐利边界”问题,使分类存在模糊性、不准确性。且随着多媒体技术的飞速发展,图像信息数据迅速增长,海量的图像数据会形成大量冗余的关联规则,这将导致分类效率大大降低。针对这2个问题,文中提出基于模糊关联规则和决策树的图像自动标注模型。该模型首先获得关联训练图像低层特征和高层语义的模糊关联规则,再利用决策树方法删减冗余的模糊关联规则,基于决策树删减后的模糊关联规则,大大减小了算法的计算复杂度。实验在Corel 5k和IAPR-TC12两个基准数据集上进行,并从精度、召回率、F-measure以及产生的规则数量几个度量措施上进行比较。与其他几种前沿的图像自动标注方法的结果对比表明,该方法在图像的标注精度和标注效率上有很大的提高。
推荐文章
基于决策树C4.5集成算法的图像自动标注
C4.5算法
集成学习
修正矩阵
图像标注
基于决策树和模糊SVM的图像情感分类研究
决策树
模糊支持向量机(FSVM)
图像情感
基于决策树的汽车配置规则预测系统研究
数据挖掘
决策树
预测系统
基于关联规则的决策树算法
决策树
关联规则
分类算法
扩展性
组合算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于模糊关联规则和决策树的图像自动标注
来源期刊 智能系统学报 学科 工学
关键词 锐利边界 模糊分类 图像自动标注 模糊关联规则 决策树
年,卷(期) 2015,(4) 所属期刊栏目
研究方向 页码范围 636-644
页数 9页 分类号 TP391
字数 5911字 语种 中文
DOI 10.3969/j.issn.1673-4785.201505009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李志欣 广西师范大学广西多源信息挖掘与安全重点实验室 30 144 7.0 11.0
3 张灿龙 广西师范大学广西多源信息挖掘与安全重点实验室 41 194 8.0 11.0
7 李灵芝 广西师范大学广西多源信息挖掘与安全重点实验室 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (51)
参考文献  (17)
节点文献
引证文献  (3)
同被引文献  (15)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(5)
  • 参考文献(1)
  • 二级参考文献(4)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(8)
  • 参考文献(3)
  • 二级参考文献(5)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(6)
  • 参考文献(2)
  • 二级参考文献(4)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
锐利边界
模糊分类
图像自动标注
模糊关联规则
决策树
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
总被引数(次)
12401
论文1v1指导