基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的Mean-Shift算法在目标跟踪过程中,由于跟踪窗口尺度固定而不能很好适应目标的尺度变化,当目标尺度减小时,目标区域所提取的特征向量包含过多的背景干扰信息,目标尺度增大会使跟踪窗口偏离目标的质心,降低跟踪的鲁棒性。为此文中采用万向椭圆的方式对目标区域进行描述,减少背景干扰信息以突出目标模型,提取椭圆区域的加权颜色直方图为目标特征,采用尺度加减法自适应调整椭圆区域的大小,并在跟踪过程中根据运动轨迹动态调整椭圆方向,以增强跟踪的准确性。实验结果表明万向椭圆能够更好地描述跟踪目标的尺度和方向,在目标尺度变化比较平稳的情况下,尺度加减法能自适应调整跟踪窗口的尺度,可以取得良好的跟踪效果。
推荐文章
基于自适应尺度的Mean-shift跟踪算法
图像处理
Mean-shift算法
自适应
尺度空间
基于改进的Mean-Shift算法的人体跟踪
Mean-Shift
扩展卡尔曼滤波
人体跟踪
Bhattacharyya系数
基于边界沙包核函数的 Mean-Shift 跟踪算法
Mean-Shift
目标跟踪
颜色直方图
沙包窗核函数
基于Mean-Shift优化的TLD视频长时间跟踪算法
长时间跟踪
TLD
在线学习
Mean-Shift
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 万向椭圆描述的Mean-Shift算法
来源期刊 计算机技术与发展 学科 工学
关键词 Mean-Shift 万向椭圆 特征提取 视频跟踪
年,卷(期) 2015,(1) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 11-14
页数 4页 分类号 TP751.1
字数 2898字 语种 中文
DOI 10.3969/j.issn.1673-629X.2015.01.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 丁广太 上海大学计算机工程与科学学院 21 68 5.0 7.0
2 张华伟 上海大学计算机工程与科学学院 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (46)
共引文献  (61)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(6)
  • 参考文献(1)
  • 二级参考文献(5)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(4)
  • 参考文献(2)
  • 二级参考文献(2)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(11)
  • 参考文献(1)
  • 二级参考文献(10)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Mean-Shift
万向椭圆
特征提取
视频跟踪
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导