基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Forecasts can either be short term, medium term or long term. In this work we considered short term forecast because of the problem of limited data or time series data that is often encounter in time series analysis. This simulation study considered the performances of the classical VAR and Sims-Zha Bayesian VAR for short term series at different levels of collinearity and correlated error terms. The results from 10,000 iteration revealed that the BVAR models are excellent for time series length of T=8 for all levels of collinearity while the classical VAR is effective for time series length of T=16 for all collinearity levels except when ρ = -0.9 and ρ = -0.95. We therefore recommended that for effective short term forecasting, the time series length, forecasting horizon and the collinearity level should be considered.
推荐文章
基于Copula的VaR计算
VaR
Copula
Archimedean-Copula
蒙特卡洛模拟
加权分布模型测算个股VaR
VaR
加权分布
市场模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Short Term Forecasting Performances of Classical VAR and Sims-Zha Bayesian VAR Models for Time Series with Collinear Variables and Correlated Error Terms
来源期刊 统计学期刊(英文) 学科 医学
关键词 Short term Forecasting Vector Autoregressive (VAR) BAYESIAN VAR (BVAR) Sims-Zha Prior COLLINEARITY Error Terms
年,卷(期) tjxqkyw_2015,(7) 所属期刊栏目
研究方向 页码范围 742-753
页数 12页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Short
term
Forecasting
Vector
Autoregressive
(VAR)
BAYESIAN
VAR
(BVAR)
Sims-Zha
Prior
COLLINEARITY
Error
Terms
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
论文1v1指导