基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
微博实体链接是把微博中给定的指称链接到知识库的过程,广泛应用于信息抽取、自动问答等自然语言处理任务(Natural language processing, NLP)。由于微博内容简短,传统长文本实体链接的算法并不能很好地用于微博实体链接任务。以往研究大都基于实体指称及其上下文构建模型进行消歧,难以识别具有相似词汇和句法特征的候选实体。本文充分利用指称和候选实体本身所含有的语义信息,提出在词向量层面对任务进行抽象建模,并设计一种基于词向量语义分类的微博实体链接方法。首先通过神经网络训练词向量模板,然后通过实体聚类获得类别标签作为特征,再通过多分类模型预测目标实体的主题类别来完成实体消歧。在NLPCC2014公开评测数据集上的实验结果表明,本文方法的准确率和召回率均高于此前已报道的最佳结果,特别是实体链接准确率有显著提升。
推荐文章
基于词向量的中文微博实体链接方法
实体链接
词向量
维基百科
同义词
一种基于用户兴趣的微博实体链接方法
自然语言理解
实体链接
实体消歧
概率主题模型
用户兴趣建模
基于词向量的实体链接方法
实体链接
潜在狄利克雷分布
词向量
排序学习
基于语义空间的藏文微博情感分析方法
藏语微博
情感分类
语义空间
文本聚类
语义簇
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于词向量语义分类的微博实体链接方法
来源期刊 自动化学报 学科
关键词 词向量 实体链接 社会媒体处理 神经网络 多分类
年,卷(期) 2016,(6) 所属期刊栏目
研究方向 页码范围 915-922
页数 8页 分类号
字数 6156字 语种 中文
DOI 10.16383/j.aas.2016.c150715
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄河燕 北京理工大学计算机学院 30 311 13.0 16.0
3 冯冲 北京理工大学计算机学院 14 156 7.0 12.0
6 郭宇航 北京理工大学计算机学院 3 22 2.0 3.0
7 石戈 北京理工大学计算机学院 2 18 2.0 2.0
8 龚静 北京理工大学计算机学院 1 13 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (69)
共引文献  (71)
参考文献  (9)
节点文献
引证文献  (13)
同被引文献  (28)
二级引证文献  (14)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(9)
  • 参考文献(0)
  • 二级参考文献(9)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(15)
  • 参考文献(0)
  • 二级参考文献(15)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(6)
  • 参考文献(5)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(6)
  • 引证文献(4)
  • 二级引证文献(2)
2019(14)
  • 引证文献(6)
  • 二级引证文献(8)
2020(5)
  • 引证文献(1)
  • 二级引证文献(4)
研究主题发展历程
节点文献
词向量
实体链接
社会媒体处理
神经网络
多分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
国家重点基础研究发展计划(973计划)
英文译名:National Basic Research Program of China
官方网址:http://www.973.gov.cn/
项目类型:
学科类型:农业
国家高技术研究发展计划(863计划)
英文译名:The National High Technology Research and Development Program of China
官方网址:http://www.863.org.cn
项目类型:重点项目
学科类型:信息技术
论文1v1指导