作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
模糊C均值(Fuzzy C-Means)算法是在K-Means聚类算法的基础上,利用模糊数学的原理进行的改进,讨论了它的数学原理及使用C++语言编程实现的步骤,将其应用于超声图像感兴趣区域(ROI)的检测,取得了可信的结果.
推荐文章
优化的核模糊C均值聚类算法
模糊C均值聚类
核函数
蝙蝠算法
佳点集
速度权重
基于改进QPSO的模糊C-均值聚类算法
模糊C-均值聚类
量子粒子群优化
聚类分析
量子门更新策略
基于QPSO的模糊C均值聚类算法
量子粒子群算法
粒子群算法
模糊C均值聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 模糊C均值聚类算法编程实现及应用
来源期刊 石家庄职业技术学院学报 学科 工学
关键词 Fuzzy C-Means 聚类 算法 编程
年,卷(期) 2016,(2) 所属期刊栏目 技术应用
研究方向 页码范围 30-33
页数 4页 分类号 TP301.6
字数 3016字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 马宝秋 石家庄职业技术学院机电工程系 13 21 4.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (78)
共引文献  (1054)
参考文献  (9)
节点文献
引证文献  (4)
同被引文献  (11)
二级引证文献  (4)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(5)
  • 参考文献(1)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(6)
  • 参考文献(1)
  • 二级参考文献(5)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(9)
  • 参考文献(2)
  • 二级参考文献(7)
2008(4)
  • 参考文献(2)
  • 二级参考文献(2)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(10)
  • 参考文献(0)
  • 二级参考文献(10)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
Fuzzy C-Means
聚类
算法
编程
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
石家庄职业技术学院学报
双月刊
1009-4873
13-1285/G4
大16开
石家庄市长兴街12号
1989
chi
出版文献量(篇)
2842
总下载数(次)
6
论文1v1指导