基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于高斯RBF核支持向量机预测棉花商品期货主力和次主力合约协整关系的价差序列,确定最优SVM参数,并选择合适的开平仓阈值,进行同品种跨期套利.再与多项式核支持向量机套利结果对比,得到在所有开平仓阈值上,基于高斯RBF核支持向量机套利的收益率都明显高于多项式核支持向量机套利的收益率.
推荐文章
复高斯小波核函数的支持向量机研究
复高斯小波核函数
Mercy条件
支持向量机
非线性系统辨识及预测
基于支持向量机的改进高斯核函数聚类算法研究
改进的高斯核
聚类
SVC
高斯核
高斯小波支持向量机的研究
高斯小波核
支持向量机
核函数方法
短期负荷预测
基于ETF组合的股指期货套利研究
ETF组合
无套利边界
冲击成本
股指期货
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于高斯核支持向量机的商品期货市场套利研究
来源期刊 经济数学 学科 经济
关键词 机器学习 高斯核支持向量机 套利策略
年,卷(期) 2018,(1) 所属期刊栏目 金融工程
研究方向 页码范围 27-30
页数 4页 分类号 F724.5
字数 2931字 语种 中文
DOI 10.3969/j.issn.1007-1660.2018.01.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王波 上海理工大学管理学院 162 787 16.0 21.0
2 邓亚东 上海理工大学管理学院 4 7 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (13)
参考文献  (7)
节点文献
引证文献  (5)
同被引文献  (19)
二级引证文献  (1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(4)
  • 引证文献(4)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
机器学习
高斯核支持向量机
套利策略
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
经济数学
季刊
1007-1660
43-1118/O1
16开
湖南省长沙市岳麓山湖南大学期刊社
42-364
1984
chi
出版文献量(篇)
1569
总下载数(次)
11
总被引数(次)
8356
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导