基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种融合二维非相关判别转换和二维线性鉴别分析分别提取人脸图像矩阵行方向的非相关鉴别信息和列方向的线性鉴别信息的人脸识别方法.该融合方法将线性鉴别向量提取方法与非相关鉴别向量提取方法相结合.首先计算进行人脸图像矩阵列压缩时的类间散射矩阵和类内散射矩阵,用二维线性鉴别分析计算特征值和所对应的特征向量,用特征向量集对人脸图像矩阵进行列压缩.其次,计算人脸图像矩阵行压缩时的类间散射矩阵、类内散射矩阵和总体散射矩阵,用二维非相关判别转换求出最优投影矩阵并用最优投影矩阵的转置矩阵对人脸图像矩阵行压缩.最后用最近邻分类器对压缩的ORL人脸图像测试样本进行分类处理,可实现人脸图像的准确识别.
推荐文章
基于QR分解与2DLDA的单样本人脸识别
虚拟图像
单样本
二维线性判别分析
QR分解
基于分块2DPCA 与2DLDA的单训练样本人脸识别
单训练样本
人脸识别
二维主成分分析(2DPCA)
二维线性判别分析(2DLDA)
融合2DPCA和贝叶斯的人脸识别算法
人脸识别
2DPCA
小波变换
贝叶斯方法
融合2DDCT、2DPCA和2DLDA的人脸识别方法
二维主分量分析
二维线性判别分析
特征提取
离散余弦变换
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合2 DUDT与2 DLDA的人脸识别研究
来源期刊 南昌工程学院学报 学科 工学
关键词 二维非相关判别转换 人脸识别 二维线性鉴别分析 特征提取
年,卷(期) 2018,(1) 所属期刊栏目
研究方向 页码范围 45-48,53
页数 5页 分类号 TP391.41
字数 3528字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 武小红 江苏大学电气信息工程学院 62 694 15.0 24.0
2 武斌 滁州职业技术学院信息工程系 20 30 2.0 4.0
3 贾红雯 滁州职业技术学院信息工程系 20 25 2.0 3.0
4 曹丹华 江苏大学电气信息工程学院 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (14)
参考文献  (15)
节点文献
引证文献  (2)
同被引文献  (10)
二级引证文献  (11)
1936(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(4)
  • 参考文献(2)
  • 二级参考文献(2)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(6)
  • 参考文献(2)
  • 二级参考文献(4)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(11)
  • 引证文献(2)
  • 二级引证文献(9)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
二维非相关判别转换
人脸识别
二维线性鉴别分析
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南昌工程学院学报
双月刊
1006-4869
36-1288/TV
大16开
江西省南昌市天祥大道289号,南昌工程学院学报编辑部
1982
chi
出版文献量(篇)
2353
总下载数(次)
9
总被引数(次)
6291
论文1v1指导