基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种将机磁阻抗技术用于金属板结构健康监测的方法,并使用BP神经网络数据处理技术实现金属板损伤程度的定量识别.首先,建立铝板与磁致伸缩材料构成的机磁阻抗模型,并推导出模型的耦合电阻抗表达式.然后,利用有限元软件ANSYS建立耦合系统的三维模型,并通过有限元谐响应分析方法得到铝板在缺陷尺寸从5mm变化到13mm的机磁阻抗谱.同时,建立BP神经网络模型,对缺陷尺寸为7 mm和12 mm的机磁阻抗谱进行验证.结果表明,神经网络能够准确识别出铝板缺陷的损伤级别.在铝板机磁阻抗检测中使用神经网络进行数据处理,不仅可以实现缺陷尺寸的精确定量,而且还具有较高的稳定性.
推荐文章
基于遗传优化神经网络算法的桥梁结构损伤识别
人工神经网络
遗传算法
桥梁损伤识别
抗弯刚度
基于曲率模态和神经网络的结构损伤识别与仿真
曲率模态
Elman神经网络
损伤识别
仿真分析
基于神经网络模型的桥梁结构损伤识别
人工神经网络
损伤识别
桁架桥
基于柔度矩阵和神经网络的结构损伤识别法
结构
损伤识别
柔度矩阵
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于神经网络铝板机磁阻抗结构损伤识别
来源期刊 大连交通大学学报 学科
关键词 金属板 机磁阻抗 结构健康监测 磁致伸缩 神经网络
年,卷(期) 2019,(3) 所属期刊栏目 机械工程
研究方向 页码范围 66-71
页数 6页 分类号
字数 3212字 语种 中文
DOI 10.13291/j.cnki.djdxac.2019.03.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王晓煜 大连交通大学机械工程学院 11 70 3.0 8.0
2 高斯佳 大连交通大学机械工程学院 4 0 0.0 0.0
3 詹益 大连交通大学机械工程学院 4 7 1.0 2.0
4 郭新峰 大连交通大学机械工程学院 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (77)
共引文献  (73)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(3)
  • 参考文献(2)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(6)
  • 参考文献(0)
  • 二级参考文献(6)
2000(10)
  • 参考文献(2)
  • 二级参考文献(8)
2001(12)
  • 参考文献(1)
  • 二级参考文献(11)
2002(8)
  • 参考文献(0)
  • 二级参考文献(8)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(7)
  • 参考文献(4)
  • 二级参考文献(3)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
金属板
机磁阻抗
结构健康监测
磁致伸缩
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
大连交通大学学报
双月刊
1673-9590
21-1550/U
大16开
大连市沙河口区黄河路794号
1980
chi
出版文献量(篇)
3012
总下载数(次)
3
总被引数(次)
12659
论文1v1指导