基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对Kalman滤波在对敌目标估计应用中遇到的量测和过程噪声均未知且时变的情况,提出了一种利用变分贝叶斯估计的双尺度自适应滤波方法.解决了2个关键问题:一是针对量测和过程噪声协方差的共轭后验分布提出了相对转移概率指标,设计了启发式的自适应噪声估计窗口,实现了稳态精度和时变响应性能的综合提升,能适应敌方目标机动性高且统计特性变化快的特点;二是设计了在不同时间尺度上估计过程噪声和量测噪声的协方差方法,解决了在同一时间尺度上使协方差估计值发生严重偏差且增大滤波误差的问题.仿真表明,所提方法能快速跟踪目标状态噪声统计特性的变化并保证估计精度.
推荐文章
一种基于变分贝叶斯的半监督双聚类算法
双聚类算法
变分贝叶斯
半监督学习
概率模型
基于变分贝叶斯算法的线性变参数系统辨识
非线性过程
线性变参数系统
多模型
变分贝叶斯算法
参数估计
鲁棒化的变分贝叶斯自适应卡尔曼滤波算法
自适应滤波
卡尔曼滤波
鲁棒性
变分贝叶斯
野值
基于变分贝叶斯算法的青霉素发酵过程建模
青霉素发酵过程
变分贝叶斯算法
融合模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于变分贝叶斯估计方法的双尺度自适应Kalman滤波
来源期刊 空军工程大学学报(自然科学版) 学科 工学
关键词 自适应Kalman滤波 变分贝叶斯方法 双尺度估计 启发式算法
年,卷(期) 2019,(2) 所属期刊栏目 电子信息与通信导航
研究方向 页码范围 79-85
页数 7页 分类号 TN967.2
字数 5739字 语种 中文
DOI 10.3969/j.issn.1009-3516.2019.02.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴俊峰 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (45)
共引文献  (67)
参考文献  (11)
节点文献
引证文献  (1)
同被引文献  (8)
二级引证文献  (0)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(6)
  • 参考文献(3)
  • 二级参考文献(3)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
自适应Kalman滤波
变分贝叶斯方法
双尺度估计
启发式算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
空军工程大学学报(自然科学版)
双月刊
1009-3516
61-1338/N
大16开
西安市空军工程大学
52-247
2000
chi
出版文献量(篇)
2810
总下载数(次)
5
总被引数(次)
15414
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导