基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
图像去噪过程中由于噪声的影响,无法学习到准确的先验知识,因此难以获取较优的稀疏系数.针对该问题,本文提出一种基于非凸加权lp范数稀疏误差约束的图像去噪算法.该算法将系数求解过程分解为两个子问题,采用广义软阈值算法求解lp范数中的稀疏系数,再利用代理算法求解稀疏误差约束中的稀疏系数,根据二者的均值来获取更具鲁棒性的稀疏系数.与当前几种典型的算法进行对比分析,实验结果表明:本文算法不仅具有更高的峰值信噪比(PSNR),而且在运行时间上具有更高的效率,同时在视觉角度上产生了更好的视觉感受.
推荐文章
组约束与非局部稀疏的图像去噪算法
图像去噪
非局部相似
稀疏表示
分组约束
基于稀疏性的图像去噪综述
稀疏去噪
降噪模型
小波方法
多尺度几何分析
独立成分分量
一种非零元个数约束的字典学习图像去噪算法
图像去噪
字典学习
稀疏表示
K-SVD
非零元个数
基于字典学习的图像稀疏去噪算法
稀疏字典
K-SVD算法
字典学习
稀疏去噪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于非凸加权Lp范数稀疏误差约束的图像去噪算法
来源期刊 智能系统学报 学科 工学
关键词 图像去噪 稀疏表示 稀疏系数 先验知识 l1范数 非凸加权lp范数 稀疏误差约束 峰值信噪比
年,卷(期) 2019,(3) 所属期刊栏目
研究方向 页码范围 500-507
页数 8页 分类号 TP391
字数 4816字 语种 中文
DOI 10.11992/tis.201804057
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐久成 河南师范大学计算机与信息工程学院 97 660 14.0 20.0
5 王楠 河南师范大学计算机与信息工程学院 15 26 3.0 5.0
7 王煜尧 河南师范大学计算机与信息工程学院 3 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (70)
共引文献  (53)
参考文献  (19)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(8)
  • 参考文献(2)
  • 二级参考文献(6)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(10)
  • 参考文献(1)
  • 二级参考文献(9)
2013(6)
  • 参考文献(3)
  • 二级参考文献(3)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(9)
  • 参考文献(4)
  • 二级参考文献(5)
2017(8)
  • 参考文献(5)
  • 二级参考文献(3)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像去噪
稀疏表示
稀疏系数
先验知识
l1范数
非凸加权lp范数
稀疏误差约束
峰值信噪比
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
总被引数(次)
12401
论文1v1指导