摘要:
目的 如何使快速性与完整性达到平衡是运动目标检测的关键问题.现有的满足快速性的算法容易受到光照的影响,对动态环境的适应能力较弱,获取的目标信息不完整,导致空洞问题的产生.而具有较高完整性的算法复杂度高,运算速度慢,实时性差.为此,本文提出基于自适应混合高斯建模的3帧差分算法.方法 利用3帧差分运算简单、可扩展性强、抗干扰能力好的特性,对视频图像进行目标轮廓的提取.针对3帧差分运算导致目标内部信息提取不完整的问题,采用学习率自适应调整的混合高斯背景差分,在模型创建之初,通过较快的模型更新速率,增加背景模型的迭代次数,消除物体运动造成的“鬼影”.在背景模型中的干扰信息消除之后,以目标像素及相邻8像素在当前帧与背景模型中的差异度为依据调整学习率,实现背景模型的自适应修正,增加目标图像的完整性;同时,通过删除冗余的高斯分布,降低算法复杂度.为进一步确保目标边缘的完整及连续,采用边缘对比差分算法,使参与运算的帧数依据目标的运动速度自适应选取,以降低背景点的误判率,使边缘信息尽可能地连续、完整.结果 本文算法获取的目标信息完整,且边缘平滑.在提升检测率的同时保证较高的准确率,达到了95.23%,所获目标的完整度提高了28.95%;与传统混合高斯算法相比,时间消耗降低了29.18%,基本达到实时性要求.与基于混合高斯建模的背景差分法(BD-GMM)和基于边缘对比的3帧差分法(TFD-EC)相比,本文算法明显占优.结论 实验结果表明,本文算法可以有效抑制动态环境的干扰,降低算法复杂度,既保证实时性,又具有较好的完整性,可广泛应用于智能视频监控、军事应用、工业检测、航空航天等领域.