本文针对杂波条件下多扩展目标的状态估计,目标个数估计,扩展目标形状估计问题,提出了一种基于标签随机有限集(Labelled random finite sets,L-RFS)框架下多扩展目标跟踪学习算法,该学习算法主要包括两方面:多扩展目标动态建模和多扩展目标的跟踪估计.首先,结合广义标签多伯努利滤波器(Generalized labelled multi-Bernoulli,GLMB)建立了扩展目标的量测有限混合模型(Finite mixture models,FMM),利用Gibbs采样和贝叶斯信息准则(Bayesian information criterion,BIC)准则推导出有限混合模型的参数来对多扩展目标形状进行学习,然后采用等效量测方法来替代扩展目标产生的量测,对扩展目标形状采用椭圆逼近建模,实现扩展目标形状与状态的估计.仿真实验表明本文所给的方法能够有效跟踪多扩展目标,并且在目标个数估计方面优于CBMeMBer算法.此外,与标签多伯努利滤波(LMB)计算比较表明:GLMB和LMB算法滤波估计精度接近,二者精度高于CBMeMBer算法.