基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
链路预测中普遍存在两大问题:特征提取困难和类别数据不平衡.本文借鉴文本处理中的深度学习特征提取算法和优化问题中的粒子群算法,提出一种基于词向量的粒子群优化算法(Word2vec-PSO).该方法首先通过随机游走产生网络序列后,利用Word2vec算法对节点序列特征提取.然后在有监督的条件下,利用粒子群算法对提取好的特征进行筛选,并确定重采样的参数来解决类别数据不平衡问题,并分析了不同链路预测算法的计算复杂性.最后将本文的算法与基于相似性、基于深度学习、基于不平衡数据的3类链路预测算法,在4个不同的时序网络中进行实证对比研究.结果表明,本文提出的链路预测算法预测精度较高,算法更加稳定且具有普适性.
推荐文章
基于LDA和word2vec的英文作文跑题检测
作文跑题检测
向量空间模型
潜在狄利克雷分配
词语间语义关系
基于word2vec和双向LSTM的情感分类深度模型
文本分类
情感分析
双向长短时记忆循环神经网络
词向量
社交网络
基于word2vec的数字图书馆本体构建技术研究
本体构建
领域本体
概念抽取
关系抽取
数字图书馆现状
基于矩阵分解的DeepWalk链路预测算法
链路预测
神经网络
DeepWalk
网络表示学习
矩阵分解
相似度矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Word2vec和粒子群的链路预测算法
来源期刊 自动化学报 学科
关键词 链路预测 特征提取 不平衡问题 深度学习 粒子群优化
年,卷(期) 2020,(8) 所属期刊栏目 论文与报告
研究方向 页码范围 1703-1713
页数 11页 分类号
字数 12131字 语种 中文
DOI 10.16383/j.aas.c180187
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 韩华 武汉理工大学理学院 41 325 10.0 17.0
2 贾承丰 武汉理工大学理学院 7 10 2.0 2.0
3 吕亚楠 武汉理工大学理学院 7 7 2.0 2.0
4 张路 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1953(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(2)
  • 参考文献(2)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
链路预测
特征提取
不平衡问题
深度学习
粒子群优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
论文1v1指导