基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
现有的深度无监督聚类方法通常局限于单网络结构设计,无法充分利用多种异构网络提取特征中蕴含的互补信息,制约深度聚类方法性能的进一步提升.为此,文中提出深度多网络嵌入聚类算法(DMNEC).首先,以端到端的方式预训练多个异构网络分支,获取各网络的初始化参数.在此基础上,定义多网络软分配,借助多网络辅助目标分布建立面向聚类的KL散度损失.与此同时,利用样本重建损失对预训练阶段的解码网络进行微调,保留数据的局部结构性质,避免特征空间发生扭曲.通过随机梯度下降与反向传播优化重建损失与聚类损失的加权和,联合学习多网络表征及其簇分配.在4个公开图像数据集上的实验验证文中算法的优越性.
推荐文章
基于深度信念网络的K-means聚类算法研究
K-means算法
深度信念网络
受限玻尔兹曼机
高维数据
聚类分析
FCM算法
基于模糊核聚类的乙烯裂解深度DE-LSSVM多模型建模
乙烯裂解深度
模糊核聚类
最小二乘支持向量机
多模型建模
基于深度聚类的开源软件漏洞检测方法
开源软件
漏洞检测
源代码分析
深度学习
聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 深度多网络嵌入聚类
来源期刊 模式识别与人工智能 学科 工学
关键词 深度无监督聚类 数据表征 多网络分支 互补信息 局部结构保留
年,卷(期) 2021,(1) 所属期刊栏目 论文与报告
研究方向 页码范围 14-24
页数 11页 分类号 TP391
字数 语种 中文
DOI 10.16451/j.cnki.issn1003-6059.202101002
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (104)
共引文献  (1204)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1955(1)
  • 参考文献(1)
  • 二级参考文献(0)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(1)
  • 二级参考文献(0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(1)
  • 二级参考文献(3)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(12)
  • 参考文献(0)
  • 二级参考文献(12)
2016(24)
  • 参考文献(0)
  • 二级参考文献(24)
2017(15)
  • 参考文献(1)
  • 二级参考文献(14)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度无监督聚类
数据表征
多网络分支
互补信息
局部结构保留
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
模式识别与人工智能
月刊
1003-6059
34-1089/TP
16开
中国科学院合肥智能机械研究所安徽合肥董铺岛合肥1130信箱
26-69
1989
chi
出版文献量(篇)
2928
总下载数(次)
8
总被引数(次)
30919
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导