基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为实现快速步态状态判断,以更好地对下肢外骨骼进行高精度的步态识别和控制,进行了基于可穿戴惯性测量装置检测人体姿态变化的算法研究.通过对人体下肢的跌倒、转弯、蹲坐与起立等非周期性步态变化活动进行测算试验,获得了受试者实验过程中身体角度、下肢关节角速度和加速度变化等数据,随后应用随机森林等4种机器学习经典分类算法对受试者进行了活动识别对比分析,结果表明,决策树监督学习算法相对于其他算法,能够快速、准确地检测并判断出人体非周期性变化中的多种活动状态,历次识别精度均可达到99%以上,为可穿戴智能装备的开发与应用提供理论基础.
推荐文章
基于特征融合的步态识别算法研究
生物特征识别
步态识别
特征融合
权重
傅里叶描述子
基于深度学习的步态识别算法优化研究
步态识别
BP神经网络
粒子群
深度学习
识别率
基于LBP特征的人体行为识别算法研究
行为识别
深度图像
LBP特征
支持向量机
基于视频的人体动作识别算法综述
动作识别
RGB数据
RGB-D数据
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于机器学习的人体步态检测智能识别算法研究
来源期刊 电子测量与仪器学报 学科
关键词 外骨骼 机器学习 决策树 步态分析 智能算法
年,卷(期) 2021,(3) 所属期刊栏目 “医学与生物信息检测”专题|MEDICAL AND BIOLOGICAL INFORMATION DETECTION
研究方向 页码范围 49-55
页数 7页 分类号 TN60|TP29
字数 语种 中文
DOI 10.13382/j.jemi.B2003425
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (122)
共引文献  (24)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(13)
  • 参考文献(0)
  • 二级参考文献(13)
2007(9)
  • 参考文献(0)
  • 二级参考文献(9)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(9)
  • 参考文献(0)
  • 二级参考文献(9)
2013(11)
  • 参考文献(2)
  • 二级参考文献(9)
2014(10)
  • 参考文献(0)
  • 二级参考文献(10)
2015(15)
  • 参考文献(2)
  • 二级参考文献(13)
2016(8)
  • 参考文献(2)
  • 二级参考文献(6)
2017(7)
  • 参考文献(1)
  • 二级参考文献(6)
2018(6)
  • 参考文献(4)
  • 二级参考文献(2)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
外骨骼
机器学习
决策树
步态分析
智能算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量与仪器学报
月刊
1000-7105
11-2488/TN
大16开
北京市东城区北河沿大街79号
80-403
1987
chi
出版文献量(篇)
4663
总下载数(次)
23
总被引数(次)
44770
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导