基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对聚类问题中的非随机性缺失数据,本文基于高斯混合聚类模型,分析了删失型数据期望最大化算法的有效性,并揭示了删失数据似然函数对模型算法的作用机制.从赤池弘次信息准则、信息散度等指标,比较了所提出方法与标准的期望最大化算法的优劣性.通过删失数据划分及指示变量,推导了聚类模型参数后验概率及似然函数,调整了参数截尾正态函数的一阶和二阶估计量.并根据估计算法的有效性理论,通过关于得分向量期望的方程得出算法估计的最优参数.对于同一删失数据集,所提出的聚类算法对数据聚类中心估计更精准.实验结果证实了所提出算法在高斯混合聚类的性能上优于标准的随机性缺失数据期望最大化算法.
推荐文章
期望按期完工工件数最大化算法研究
随机排序
启发式算法
时间复杂性
基于期望最大化的K-Means聚类算法
高维数据
期望最大化
k-means聚类1
基于期望最大化加速算法的正交频分复用信道估计
校正公式
期望最大化算法
正交频分多路复用
信道估计
基于高斯混合模型的最大期望聚类算法研究
高斯混合模型
最大期望
聚类算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 嵌套删失数据期望最大化的高斯混合聚类算法
来源期刊 自动化学报 学科
关键词 高斯混合聚类 删失数据 期望最大化算法 截尾正态函数 二阶估计量
年,卷(期) 2021,(6) 所属期刊栏目 长论文|Regular Papers
研究方向 页码范围 1302-1314
页数 13页 分类号
字数 语种 中文
DOI 10.16383/j.aas.c190081
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (108)
共引文献  (14)
参考文献  (22)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(1)
  • 二级参考文献(0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(4)
  • 参考文献(0)
  • 二级参考文献(4)
1995(4)
  • 参考文献(1)
  • 二级参考文献(3)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(10)
  • 参考文献(2)
  • 二级参考文献(8)
2013(11)
  • 参考文献(1)
  • 二级参考文献(10)
2014(9)
  • 参考文献(1)
  • 二级参考文献(8)
2015(12)
  • 参考文献(2)
  • 二级参考文献(10)
2016(7)
  • 参考文献(4)
  • 二级参考文献(3)
2017(5)
  • 参考文献(3)
  • 二级参考文献(2)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高斯混合聚类
删失数据
期望最大化算法
截尾正态函数
二阶估计量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
论文1v1指导