基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决在复杂工况下风力发电机组轴承故障诊断虚警率高的问题,提出一种端到端的混合深度学习框架——基于多种小波变换的一维卷积循环神经网络.首先,通过多种小波变换得到多个时-频矩阵,以充分提取信号特征;再通过一种扩展的LSTM,对多通道时-频矩阵不同时间步信息进行提取,捕获时-频数据时空特征;最后,通过全局池化层和分类层对故障状态进行分类.实验结果表明:在复杂工况下,多种小波变换的一维卷积循环神经网络对风力发电机组轴承故障识别率能够达到95%以上.
推荐文章
基于长短时记忆神经网络的风电机组滚动轴承故障诊断方法
风电机组
滚动轴承
故障诊断
回归神经网络
长短时记忆神经网络
小波包变换
基于改进深度卷积神经网络的轴承故障诊断
风电机组
轴承
故障诊断
深度卷积神经网络
基于小波神经网络的电机故障诊断研究
异步电动机
故障诊断
转子故障
小波神经网络
小波变换和神经网络的电路故障诊断
电路故障诊断
小波变换
神经网络
故障特征提取
时频信息确定
诊断效果检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多种小波变换的一维卷积循环神经网络的风电机组轴承故障诊断
来源期刊 计量学报 学科
关键词 计量学 滚动轴承 风力发电机组 故障诊断 多种小波变换 一维卷积循环神经网络
年,卷(期) 2021,(5) 所属期刊栏目
研究方向 页码范围 615-622
页数 8页 分类号 TB936|TB973
字数 语种 中文
DOI 10.3969/j.issn.1000-1158.2021.05.12
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (92)
共引文献  (65)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(11)
  • 参考文献(0)
  • 二级参考文献(11)
2015(9)
  • 参考文献(0)
  • 二级参考文献(9)
2016(11)
  • 参考文献(0)
  • 二级参考文献(11)
2017(17)
  • 参考文献(1)
  • 二级参考文献(16)
2018(8)
  • 参考文献(3)
  • 二级参考文献(5)
2019(11)
  • 参考文献(10)
  • 二级参考文献(1)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
计量学
滚动轴承
风力发电机组
故障诊断
多种小波变换
一维卷积循环神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计量学报
月刊
1000-1158
11-1864/TB
大16开
北京1413信箱
2-798
1980
chi
出版文献量(篇)
3549
总下载数(次)
8
总被引数(次)
20173
论文1v1指导