基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 目前高光谱图像决策融合方法主要采用以多数票决(majority vote,MV)为代表的硬决策融合和以对数意见池(logarithmic opinion pool,LOGP)为代表的软决策融合策略.由于这些方法均使用统一的权重系数进行决策融合,没有对子分类器各自的分类性能进行评估而优化分配权重系数,势必会影响最终的分类精度.针对该问题,本文对多数票决和对数意见池融合策略进行了改进,提出了面向高光谱图像分类的自适应决策融合方法.方法 根据相关系数矩阵对高光谱图像进行波段分组,对每组波段进行空谱联合特征提取;利用高斯混合模型(Gaussian mixture model,GMM)或支持向量机(support vector machine,SVM)分类器对各组空谱联合特征进行分类;最后,采用本文研究的两种基于权重系数优化分配的自适应融合策略对子分类器的分类结果进行决策融合,使得分类精度低的波段组和异常值对最终分类结果的影响达到最小.结果 对两个公开的高光谱数据集分别采用多种特征和两种分类器组合进行实验验证.实验结果表明,在相同特征和分类器条件下,本文提出的自适应多数票决策融合策略(adjust majority vote,adjustMV)、自适应对数意见池决策融合策略(adjust logarithmic opinion pool,adjustLOGP)比传统的MV决策融合策略、LOGP决策融合策略对两个数据集的分类精度均有大幅度提高.Indian Pines数据集上,adjustMV算法的分类精度比相应的MV算法平均提高了1.2%,adjustLOGP算法的分类精度比相应的LOGP算法平均提高了7.38%;Pavia University数据集上,adjustMV算法的分类精度比相应的MV算法平均提高了2.1%,adjustLOGP算法的分类精度比相应的LOGP算法平均提高了4.5%.结论 本文提出的自适应权重决策融合策略为性能较优的子分类器(即对应于分类精度高的波段组)赋予较大的权重,降低了性能较差的子分类器与噪声波段对决策融合结果的影响,从而大幅度提高分类精度.所研究的决策融合策略的复杂度和计算成本均较低,在噪声环境中具有更强的鲁棒性,同时在一定程度上解决了高光谱图像分类应用中普遍存在的小样本问题.
推荐文章
基于降维Gabor特征和决策融合的高光谱图像分类
高光谱图像
分类
Gabor特征
高斯混合模型
决策融合
PCA投影
基于联合协同表示与SVM决策融合的高光谱图像分类研究
协同表示
高光谱图像分类
决策融合
支持向量机
利用特征子空间评价与多分类器融合的高光谱图像分类
高光谱图像
多分类器融合
自适应子空间分解
加权表决
基于高光谱图像的分类方法研究
高光谱图像
支持向量机
人工神经元网络
决策树分类
最大似然分类法
K -均值聚类法
迭代自组织方法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 高光谱图像分类的自适应决策融合方法
来源期刊 中国图象图形学报 学科
关键词 高光谱图像分类 空谱特征提取 决策融合 多数票决 自适应权重
年,卷(期) 2021,(8) 所属期刊栏目 高光谱图像分类|Hyperspectral Image Classification
研究方向 页码范围 1952-1968
页数 17页 分类号 TP751
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (75)
共引文献  (16)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1968(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(10)
  • 参考文献(4)
  • 二级参考文献(6)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(8)
  • 参考文献(2)
  • 二级参考文献(6)
2017(13)
  • 参考文献(1)
  • 二级参考文献(12)
2018(12)
  • 参考文献(3)
  • 二级参考文献(9)
2019(6)
  • 参考文献(2)
  • 二级参考文献(4)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱图像分类
空谱特征提取
决策融合
多数票决
自适应权重
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导