基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对卷积神经网络(CNN)对运算的需求,现场可编程逻辑门阵列(FPGA)可以充分挖掘CNN内部并行计算的特性,提高运算速度。因此,本文基于FPGA开发平台,从模型优化、参数优化,硬件加速以及手写体数字识别四个方面对CNN的FPGA加速及应用进行研究。提出一种数字识别网络RLeNet,并对网络进行参数优化,卷积运算加速采用脉冲阵列与加法树结合的硬件结构实现,同时使用并行技术和流水线技术优化加速,并使用microblaze IP通过中断控制CNN加速器IP接收串口发送的图片数据进行预测,输出结果。最后在Xilinx Nexys 4 DDR:Artix-7开发板上实现了MNIST数据集手写体数字识别预测过程,当系统时钟为200MHz时,预测一张图片的时间为36.47us。
推荐文章
稀疏卷积神经网络加速器设计
稀疏卷积神经网络
阵列运算
加速器
高能效比
基于FPGA的卷积神经网络加速器设计与实现
卷积神经网络
现场可编程门阵列
加速器
有限资源
面向云端FPGA的卷积神经网络加速器的设计及其调度
卷积神经网络
现场可编程门阵列
高层次综合
加速器
调度
一种双向脉动数据流的全卷积神经网络加速器
全卷积
反卷积层
加速优化
双向脉动数据流
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 卷积神经网络RLeNet加速器设计
来源期刊 电脑知识与技术:学术版 学科 工学
关键词 CNN FPGA RLeNet MNIST 手写体数字识别
年,卷(期) 2021,(6) 所属期刊栏目
研究方向 页码范围 16-19
页数 4页 分类号 TP389.1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CNN
FPGA
RLeNet
MNIST
手写体数字识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
论文1v1指导