基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
小波神经网络模型是将小波理论和神经网络结合起来的一种模型.通过对邮件分类问题的分析,采用由伸缩和平移因子决定的小波基函数代替传统的神经元激励函数的小波神经网络的方法,建立了相应的邮件分类的小波神经网络模型.该模型克服了传统BP神经网络参数不足、隐含层单元数目难以确定、收敛速度较慢等缺点.应用结果表明,该算法在邮件分类中能有效减少平均绝对误差,提高查准率,为邮件分类算法研究提供了一种新的方法.
推荐文章
基于小波神经网络方法的心电图分类研究
小波神经网络
分类
心电图
基于小波神经网络的信号识别
信号分选与识别
小波分析
神经网络
小波神经网络
基于小波神经网络辨识的PID神经MRAC研究
小波神经网络
PID神经网络
BP神经网络
模型参考自适应控制
小波神经网络的高效学习算法及应用研究
小波神经网络
拟牛顿算法
事故诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波神经网络的邮件分类算法研究
来源期刊 成都理工大学学报(自然科学版) 学科 工学
关键词 小波神经网络 邮件分类 垃圾邮件
年,卷(期) 2007,(5) 所属期刊栏目 地球探测与信息技术
研究方向 页码范围 581-584
页数 4页 分类号 TP183|TP393.098
字数 2656字 语种 中文
DOI 10.3969/j.issn.1671-9727.2007.05.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郭科 成都理工大学信息管理学院 128 1069 17.0 24.0
2 徐松浦 成都理工大学信息管理学院 8 146 3.0 8.0
3 梁莉 成都理工大学信息管理学院 9 31 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (68)
参考文献  (6)
节点文献
引证文献  (7)
同被引文献  (13)
二级引证文献  (30)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(4)
  • 参考文献(3)
  • 二级参考文献(1)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(2)
  • 引证文献(1)
  • 二级引证文献(1)
2011(3)
  • 引证文献(1)
  • 二级引证文献(2)
2012(3)
  • 引证文献(1)
  • 二级引证文献(2)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(3)
  • 引证文献(1)
  • 二级引证文献(2)
2016(6)
  • 引证文献(0)
  • 二级引证文献(6)
2017(6)
  • 引证文献(0)
  • 二级引证文献(6)
2018(6)
  • 引证文献(0)
  • 二级引证文献(6)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
小波神经网络
邮件分类
垃圾邮件
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
成都理工大学学报(自然科学版)
双月刊
1671-9727
51-1634/N
大16开
成都市二仙桥东三路1号
62-24
1960
chi
出版文献量(篇)
2541
总下载数(次)
5
总被引数(次)
34042
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导