基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
ICA是一种基于数据高阶统计信息的有效的数据独立特征提取技术,它能够更好地表示人脸的局部特征,ICA是PCA从二阶统计分析向高阶统计分析的拓展.本文提出了一种加权融合这两种技术的人脸特征提取算法,并结合不同的相似性度量进行了人脸识别实验.结果表明,该方法比用一种单独的特征提取方式识别率要高.
推荐文章
基于ICA和FLD相结合的人脸识别
主成分分析
独立成分分析
Fisher线性辨别分析
人脸识别
基于MB-LBP算子和Multilinear PCA算法的人脸识别
MB-LBP算法
Multilinear PCA算法
特征提取
人脸识别
基于PCA算法的人脸识别方法研究比较
主成分分析
二维主成分分析
数据降维
人脸识别
基于小波和DFB-PCA的人脸识别算法研究
小波变换
DFB-PCA
图像识别
人脸识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PCA与ICA的人脸识别算法研究
来源期刊 华中师范大学学报(自然科学版) 学科 工学
关键词 人脸识别 特征抽取 主分量分析 独立成分分析
年,卷(期) 2007,(3) 所属期刊栏目
研究方向 页码范围 373-376
页数 4页 分类号 TP391.41
字数 2938字 语种 中文
DOI 10.3321/j.issn:1000-1190.2007.03.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王展青 华中科技大学图像识别与人工智能研究所 33 190 7.0 12.0
5 刘小双 武汉理工大学理学院 4 32 3.0 4.0
6 张桂林 华中科技大学图像识别与人工智能研究所 69 1527 19.0 37.0
7 王仲君 武汉理工大学理学院 39 225 8.0 13.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (129)
参考文献  (8)
节点文献
引证文献  (12)
同被引文献  (12)
二级引证文献  (13)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(6)
  • 参考文献(0)
  • 二级参考文献(6)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(5)
  • 参考文献(1)
  • 二级参考文献(4)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(2)
  • 引证文献(2)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(3)
  • 引证文献(2)
  • 二级引证文献(1)
2013(4)
  • 引证文献(1)
  • 二级引证文献(3)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(5)
  • 引证文献(3)
  • 二级引证文献(2)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
人脸识别
特征抽取
主分量分析
独立成分分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华中师范大学学报(自然科学版)
双月刊
1000-1190
42-1178/N
大16开
武汉市武昌桂子山
38-39
1955
chi
出版文献量(篇)
3391
总下载数(次)
5
总被引数(次)
18993
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导