基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高人脸检测的速度及鲁棒性,提出了一种基于级联分类器和期望最大、主成分分析(EM-PCA)的人脸检测方法.该方法在训练阶段利用不同分辨率的训练样本来训练2个fisher线性分类器,再利用EM-PCA提取特征来训练非线性支持向量机(SVM);在检测阶段,首先通过2个fisher线性分类器快速过滤掉大量的背景区域,再利用非线性支持向量机对余下的候选区域进行进一步验证,以确认是否为人脸.实验结果证明了该方法的有效性和正确性.
推荐文章
基于MB-LBP算子和Multilinear PCA算法的人脸识别
MB-LBP算法
Multilinear PCA算法
特征提取
人脸识别
基于2D-PCA和2D-LDA的人脸识别方法
人脸识别
二维主分量分析
二维线性可分性分析
分类器融合
基于PCA的人脸识别方法的比较研究
PCA
人脸识别
2DPCA
PCA+2DPCA
基于二维PCA的人脸识别方法研究
人脸识别
特征提取
图像处理
模式识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于EM-PCA和级联分类器的人脸检测
来源期刊 中国科学院研究生院学报 学科 工学
关键词 人脸检测 级联分类器 EM-PCA fisher 支持向量机
年,卷(期) 2008,(2) 所属期刊栏目 论文
研究方向 页码范围 216-223
页数 8页 分类号 TN3
字数 4743字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 汪荣贵 合肥工业大学计算机与信息学院 104 1458 21.0 34.0
2 孙见青 合肥工业大学计算机与信息学院 7 52 5.0 7.0
3 胡韦伟 合肥工业大学计算机与信息学院 4 155 4.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (58)
参考文献  (10)
节点文献
引证文献  (6)
同被引文献  (4)
二级引证文献  (4)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(4)
  • 参考文献(1)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
人脸检测
级联分类器
EM-PCA
fisher
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国科学院大学学报
双月刊
2095-6134
10-1131/N
大16开
北京玉泉路19号(甲)
82-583
1984
chi
出版文献量(篇)
2247
总下载数(次)
2
总被引数(次)
15229
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
安徽省自然科学基金
英文译名:Anhui Provincial Natural Science Foundation
官方网址:http://www.ahinfo.gov.cn/zrkxjj/index.htm
项目类型:安徽省优秀青年科技基金
学科类型:
论文1v1指导