作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
讨论了一种基于最小二乘支持向量机的非线性动态传感器系统辨识方法,并给出了相应的推导过程和学习算法.首先,将传感器的非线性动态系统分解为静态非线性子环节和动态线性子环节串联--Hammerstein模型;然后,建立类似线性的中间模型,通过该模型能将Hammerstein模型的非线性传递函数转换为等价的类线性形式;再通过LS-SVM线性回归算法求取中间模型参数;最后推导出中间模型参数与Hammerstein模型参数之间的关系,并通过该关系反演出原传感器系统的Hammerstein模型参数,实现传感器非线性动态辨识.仿真与实际传感器系统辨识的实验结果均表明该方法可行.
推荐文章
最小二乘小波支持向量机在非线性系统辨识中的应用
小波核函数
最小二乘小波支持向量机
非线性系统辨识
基于最小二乘支持向量机的非线性系统鲁棒自适应跟踪控制
支持向量机
非线性
动态逆
自适应控制
基于最小二乘支持向量机的T-S模型在线辨识
T-S模型
时间窗
势能
最小二乘支持向量机
基于最小二乘支持向量机的MIMO线性参数变化模型辨识及预测控制
非线性系统
最小二乘支持向量机
线性参数变化模型
多输入多输出
模型预测控制
过程控制
参数识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于最小二乘支持向量机的传感器非线性动态系统辨识
来源期刊 计量学报 学科 工学
关键词 计量学 传感器 非线性动态系统 辨识 最小二乘支持向量机
年,卷(期) 2008,(3) 所属期刊栏目
研究方向 页码范围 226-230
页数 5页 分类号 TB931
字数 3790字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴德会 九江学院电子工程系 66 721 15.0 23.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (74)
参考文献  (11)
节点文献
引证文献  (11)
同被引文献  (43)
二级引证文献  (19)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(4)
  • 参考文献(1)
  • 二级参考文献(3)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(5)
  • 参考文献(1)
  • 二级参考文献(4)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(7)
  • 参考文献(1)
  • 二级参考文献(6)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2005(4)
  • 参考文献(4)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(5)
  • 引证文献(3)
  • 二级引证文献(2)
2016(4)
  • 引证文献(0)
  • 二级引证文献(4)
2017(4)
  • 引证文献(2)
  • 二级引证文献(2)
2018(6)
  • 引证文献(1)
  • 二级引证文献(5)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
计量学
传感器
非线性动态系统
辨识
最小二乘支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计量学报
月刊
1000-1158
11-1864/TB
大16开
北京1413信箱
2-798
1980
chi
出版文献量(篇)
3549
总下载数(次)
8
总被引数(次)
20173
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导