基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对某型航空发动机构建了转子-滚动轴承动力学仿真模型,并利用该模型构造了三种发动机故障样本.研究中采用松散型的小波神经网络,先对构造的三种故障信号进行小波包特征分析,提取其能量特征向量作为神经网络的输入,再采用改进的BP神经网络分类器进行发动机故障模式识别.仿真结果表明,基于小波神经网络的信息融合技术用于发动机的故障诊断是可行的和有效的.
推荐文章
基于人工神经网络的航空发动机故障诊断方法
故障诊断
BP神经网络
BP算法
航空发动机
基于RBF神经网络的航空发动机故障诊断研究
RBF网络
航空发动机
故障诊断
智能诊断
基于GSA-Elman神经网络的航空发动机故障诊断
航空发动机
Elman神经网络
万有引力算法
故障诊断
小波降噪与BSS在航空发动机故障诊断中的应用
航空发动机
盲源分离
小波降噪
特征提取
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 小波神经网络在航空发动机故障诊断中的应用
来源期刊 航空科学技术 学科 航空航天
关键词 航空发动机 故障诊断 小波包分析 神经网络
年,卷(期) 2009,(6) 所属期刊栏目 航空科学基金
研究方向 页码范围 41-44
页数 4页 分类号 V2
字数 2395字 语种 中文
DOI 10.3969/j.issn.1007-5453.2009.06.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 沈勇 4 20 2.0 4.0
2 欧阳运芳 1 3 1.0 1.0
3 马婧 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (5)
参考文献  (2)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
航空发动机
故障诊断
小波包分析
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
航空科学技术
月刊
1007-5453
11-3089/V
大16开
北京东城区交道口南大街67号主楼202室
2-691
1989
chi
出版文献量(篇)
2815
总下载数(次)
15
总被引数(次)
8380
相关基金
航空科学基金
英文译名:
官方网址:http://www.chinaasfc.cn/file_show.asp?LanMuID=GZZD0100
项目类型:面上项目
学科类型:
论文1v1指导