基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对硅锰合金埋弧冶炼过程中合金成分检测困难、离线化验滞后大、难以实时控制的问题,提出一种改进在线最小二乘支持向量机(IOLSSVM)的合金成分预测模型.该模型对每一个新增样本采用增量式学习,根据样本对模型贡献的不同删除样本集中对模型贡献最小的样本数据,利用递推计算增强模型的在线学习能力.将此模型应用于30MVA硅锰合金埋弧炉冶炼过程合金成分预测,实际生产运行数据表明了此方法的有效性.
推荐文章
改进引力搜索最小二乘支持向量机交通流预测
引力搜索算法
混沌优化算法
自适应权重系数
最小二乘支持向量机
交通流预测
基于最小二乘支持向量机的蜡沉积速率预测
最小二乘支持向量机
蜡沉积速率
预测
模型
模型精度
最小二乘支持向量机的参数优化算法研究
最小二乘支持向量机
参数优化
水下焊接
熔深预测
基于灰色最小二乘支持向量机的边坡位移预测
边坡位移
灰色模型
最小二乘支持向量机
遗传算法
时间序列
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进在线最小二乘支持向量机的合金成分预测
来源期刊 计算机工程与应用 学科 工学
关键词 硅锰合金 埋弧炉 改进的在线最小二乘支持向量机 合金成分
年,卷(期) 2011,(34) 所属期刊栏目 工程与应用
研究方向 页码范围 246-248
页数 分类号 TP273
字数 2388字 语种 中文
DOI 10.3778/j.issn.1002-8331.2011.34.068
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 阳春华 中南大学信息科学与工程学院 389 3229 27.0 37.0
2 桂卫华 中南大学信息科学与工程学院 695 7452 38.0 56.0
3 唐春霞 中南大学信息科学与工程学院 21 30 3.0 4.0
5 周志光 长沙民政学院电子信息工程系 20 131 5.0 11.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (166)
参考文献  (8)
节点文献
引证文献  (4)
同被引文献  (11)
二级引证文献  (14)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(3)
  • 参考文献(3)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(3)
  • 引证文献(1)
  • 二级引证文献(2)
2015(4)
  • 引证文献(1)
  • 二级引证文献(3)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(5)
  • 引证文献(0)
  • 二级引证文献(5)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
硅锰合金
埋弧炉
改进的在线最小二乘支持向量机
合金成分
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导