基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
人脸识别过程中,针对二维主成分分析(2DPCA)算法在特征提取和数据降维上存在的问题,本文首先引入双向二维主成分分析(2D2DPCA)算法.该算法同时考虑图像行与列方向上的信息.考虑到人脸冈像存在信息冗余而影响识别率的问题,于是本文提出一种基于小波加权双向二维主成分分析(WT—W2D2DPCA)的人脸识别算法.该算法首先采用二级小波分解对人脸图像进行预处理,提取其低频部分;然后根据人脸图像的特性,将低频部分进行奇偶分解,并引入加权思想,重组低频人脸图像,最后在ORL人脸数据库上进行双向二维主成分分析.实验结果表明,该方法不仅克服了传统2DPCA系数矩阵大的问题,而且得到了比传统的2DPCA、2D2DPCA算法更好的识别效果.
推荐文章
一种基于2DPCA和LDA的人脸表情识别算法
Gabor特征
2DPCA
LDA
C-Mean
KNN
融合2DPCA和贝叶斯的人脸识别算法
人脸识别
2DPCA
小波变换
贝叶斯方法
基于对称非迭代双边2DPCA的人脸识别
人脸识别
镜像对称性
二维主成分分析
非迭代双边二维主成分分析
对称非迭代双边二维主成分分析
基于DWT,2DPCA和KPCA的人脸识别
小波变换
2DPCA算法
KPCA算法
人脸识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于WT—W2D2DPCA的人脸识别算法研究
来源期刊 汕头大学学报:自然科学版 学科 工学
关键词 小波变换 双向二维主成分分析 加权 人脸识别
年,卷(期) 2012,(1) 所属期刊栏目
研究方向 页码范围 65-73
页数 分类号 TU43|O344
字数 4977字 语种 中文
DOI 10.3969/j.issn.1001-4217.2012.01.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 庄哲民 汕头大学电子工程系 44 908 9.0 30.0
2 钟秀锋 汕头大学电子工程系 2 2 1.0 1.0
3 肖文 汕头大学电子工程系 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (41)
共引文献  (45)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(6)
  • 参考文献(1)
  • 二级参考文献(5)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(9)
  • 参考文献(0)
  • 二级参考文献(9)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
小波变换
双向二维主成分分析
加权
人脸识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
汕头大学学报(自然科学版)
季刊
1001-4217
44-1059/N
16开
广东省汕头市大学路243号
46-17
1986
chi
出版文献量(篇)
992
总下载数(次)
3
总被引数(次)
3796
论文1v1指导