基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决复杂函数的全局优化问题,提出一种蚁群和微分进化相融合的自适应优化算法。采用微分进化算法的变异和交叉操作避免蚁群算法过早收敛,使用蚁群算法的寻优路径信息素正反馈机制来加速微分进化算法收敛于最优路径,并自动调整搜索范围。实验结果表明,与蚁群算法和微分进化算法相比,该算法全局优化的搜索效率较高。
推荐文章
改进自适应微分进化算法求解全局优化问题
微分进化
全局优化
控制参数自适应
收敛速度
鲁棒性
融合自适应混沌差分进化的粒子群优化算法
粒子群优化算法
差分进化算法
自适应混沌
蜂群—蚁群自适应优化算法
优化问题
蚁群优化
人工蜂群算法
自适应蚁群算法优化红外图像分割
图像分割
红外图像
二维最大熵分割
蚁群算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 蚁群和微分进化相融合的自适应优化算法
来源期刊 计算机工程 学科 工学
关键词 蚁群算法 微分进化算法 信息素 融合算法 全局优化
年,卷(期) 2013,(9) 所属期刊栏目 人工智能及识别技术
研究方向 页码范围 258-262,280
页数 6页 分类号 TP301.6
字数 4353字 语种 中文
DOI 10.3969/j.issn.1000-3428.2013.09.058
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 付华 辽宁工程技术大学电气与控制工程学院 242 1698 20.0 28.0
2 魏林 辽宁工程技术大学基础教学部 15 38 4.0 6.0
3 尹玉萍 辽宁工程技术大学电气与控制工程学院 16 51 5.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (45)
共引文献  (292)
参考文献  (10)
节点文献
引证文献  (4)
同被引文献  (29)
二级引证文献  (5)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(6)
  • 参考文献(1)
  • 二级参考文献(5)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(8)
  • 参考文献(0)
  • 二级参考文献(8)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
蚁群算法
微分进化算法
信息素
融合算法
全局优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
论文1v1指导