基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于数据驱动的T OD时段识别方法,对区域不同路口、不同流向、不同时刻的交通流数据,采用多元相关分析、主成分分析等在空间尺度上识别出路网的关键路口和关键交通流向,采用层次聚类在时间尺度上识别出不同的交通状态和各T OD时段。以9个道路交叉口流量数据为应用实例,获取其中6个不同路口方向为关键交通流,并将不同时刻观测值聚类为5种不同的交通状态,进而识别出1 d的8个 T OD时段,每个时段分别代表干线或区域高、中、低等不同流量时期,表明了该方法的有效性。
推荐文章
基于Gabor特征提取和SVM交通标志识别方法研究
交通标志识别
图像灰度化
图像增强
Gabor特征提取
主成分分析
支持向量机
交通标志识别方法设计
交通标志
图像识别
BP神经网络
基于卷积神经网络的交通声音事件识别方法
Gammatone滤波器
卷积神经网络
音频事件识别
公路交通环境
声音数字信号
子带滤波
基于数据块特征的地面目标识别方法研究
地面目标
图像识别
数据块
匹配
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于数据驱动的区域交通TOD时段识别方法研究
来源期刊 武汉理工大学学报(交通科学与工程版) 学科 交通运输
关键词 T OD时段识别 交通状态 多元相关分析 主成分分析 层次聚类
年,卷(期) 2014,(1) 所属期刊栏目
研究方向 页码范围 40-45
页数 6页 分类号 U495
字数 6355字 语种 中文
DOI 10.3963/j.issn.2095-3844.2014.01.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王劲峰 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室 79 4337 36.0 65.0
2 王海起 中国石油大学华东地球科学与技术学院 9 15 2.0 3.0
3 张腾 中国石油大学华东地球科学与技术学院 11 25 3.0 5.0
4 孟斌 北京100101北京联合大学应用文理学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (35)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1644(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
T OD时段识别
交通状态
多元相关分析
主成分分析
层次聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
武汉理工大学学报(交通科学与工程版)
双月刊
2095-3844
42-1824/U
大16开
武昌区和平大道1178号
38-148
1959
chi
出版文献量(篇)
5723
总下载数(次)
12
总被引数(次)
47608
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导