作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
[目的]解决水稻害虫传统识别方法的低时效性问题.[方法]采用数字图像处理方法对水稻害虫进行图像识别和分类,对水稻害虫的虫体面积、虫体周长、偏心率、形状参数、似圆度、叶状性、球形性等几何形状特征进行提取和研究,并采用支持向量机(SVM)分类器对水稻害虫二化螟、三化螟、稻飞虱、卷叶螟进行分类.[结果]利用所建立的6个特征判别函数对4种水稻害虫进行判别分类,识别率达到96.67%,说明这6个经过筛选的特征具有很强的判别性.[结论]支持向量机分类器的识别方法很好地解决水稻害虫传统识别方法的低时效性问题.支持向量机以风险最小化为原则,兼顾训练误差与测试误差的最小化,具体体现在分类模型的选择和模型参数的选择上.
推荐文章
基于深度学习的图像识别技术研究综述
图像识别
CNN
R-CNN
SPP-Net
FastR-CNN
谷物害虫图像识别中特征值提取技术的研究
仓储物害虫
数理统计特征
纹理特征
几何形状特征
模式识别
运动图像识别技术在谷物害虫检测中的应用
谷物害虫检测
三帧差分法
运动变化检测
基于图像融合技术的运动目标图像识别研究
图像融合
运动目标图像识别
特征提取
小波降噪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 水稻害虫图像识别技术研究
来源期刊 安徽农业科学 学科 农学
关键词 图像处理 特征提取 识别分类
年,卷(期) 2014,(23) 所属期刊栏目 农业信息科学
研究方向 页码范围 8043-8045,8082
页数 4页 分类号 S126
字数 3309字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李文斌 杭州电子科技大学通信工程学院 1 7 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (99)
参考文献  (3)
节点文献
引证文献  (7)
同被引文献  (17)
二级引证文献  (16)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(4)
  • 引证文献(2)
  • 二级引证文献(2)
2019(9)
  • 引证文献(2)
  • 二级引证文献(7)
2020(7)
  • 引证文献(0)
  • 二级引证文献(7)
研究主题发展历程
节点文献
图像处理
特征提取
识别分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
安徽农业科学
半月刊
0517-6611
34-1076/S
大16开
安徽省合肥市农科南路40号
26-20
1961
chi
出版文献量(篇)
78281
总下载数(次)
236
总被引数(次)
436536
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导