基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 基于正则化的重建是单幅图像超分辨的重要方法之一.其中,如何构造合适的图像先验,增强超分辨重建过程中的边缘和纹理保持能力是该类方法的关键.提出一个全局和局部结构内容自适应正则化的单幅图像超分辨模型.方法 该模型综合了图像梯度的全局非高斯性和局部结构方向自适应回归特性.首先,利用广义高斯分布拟合图像梯度模的重尾特性,由最大后验概率框架构造了图像全局内容感知的lα(0<α<1)范数稀疏性度量;然后,利用图像局部内容的各向异性相关性,给出基于Geman-McClure(GM)权函数加权的局部结构方向自适应回归先验;最后利用半二次惩罚和变量分裂法,设计了该优化模型快速求解的超分辨算法.结果 实验结果表明:在客观评价上,本文方法在峰值信噪比与结构相似度两方面优于现有的一些超分辨方法,在主观视觉效果上,能够很好的恢复图像的纹理细节和边缘信息.结论 基于全局和局部结构内容自适应正则化的单幅图像超分辨方法在保持图像边缘和恢复图像纹理细节方面取得较好的重建性能.
推荐文章
基于L1/2正则化和局部纹理约束的人脸超分辨率图像重建
稀疏表示
人脸图像
图像重建
L1/2正则化
局部纹理约束
基于自适应规整化方法的图像超分辨率重建
超分辨率重建
Gauss-Gibbs随机场
参数估计
自适应规整化
基于稀疏表示的自适应图像超分辨率重建算法
超分辨率
自适应正则化
联合字典
融合全局与局部视角的光场超分辨率重建
超分辨率重建
光场
卷积神经网络
自适应
全局视角
局部视角
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 全局和局部结构内容自适应正则化的单幅图像超分辨模型
来源期刊 中国图象图形学报 学科 工学
关键词 超分辨 正则化 稀疏性 结构方向自适应回归
年,卷(期) 2015,(1) 所属期刊栏目 图像处理和编码
研究方向 页码范围 11-19
页数 9页 分类号 TP391
字数 5426字 语种 中文
DOI 10.11834/jig.20150102
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 肖亮 南京理工大学计算机科学与工程学院 132 1593 20.0 33.0
2 刘鹏飞 南京理工大学计算机科学与工程学院 3 13 2.0 3.0
3 黄伟 南京理工大学计算机科学与工程学院 4 13 2.0 3.0
4 唐松泽 南京理工大学计算机科学与工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (42)
参考文献  (11)
节点文献
引证文献  (1)
同被引文献  (1)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(5)
  • 参考文献(4)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
超分辨
正则化
稀疏性
结构方向自适应回归
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导