基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文提出了一种基于现场可编程门阵列(FPGA)的卷积神经网络(CNN)加速器的设计与实现方法,以期在资源和功耗受限的平台中为CNN的计算提供加速.首先,我们采用了数据量化的方式将网络参数从浮点数转化为定点数,从而降低了加速系统所需的硬件开销;其次,提出了一种从FPGA端发起数据访问的系统架构,避免了系统运行中因处理器对FPGA频繁干预而引起性能下降的问题;最后,为CNN的计算设计了高效的数据处理和缓存电路,从电路层面保证了加速器的计算效率.本文以交通标志识别(TSR)为应用场景将上述加速方案进行了板级实现.测试结果显示,识别时间为49ms,其中单个乘法器提供了0.081GOPS的性能,性能功耗比达到了6.81GOPS/W.与近年来相关领域文献对比,可以看出本文提出的方案在资源和功耗受限的情况下可以提供更高的性能.
推荐文章
基于FPGA的卷积神经网络加速器设计与实现
卷积神经网络
现场可编程门阵列
加速器
有限资源
一种基于FPGA的卷积神经网络加速器设计与实现
卷积神经网络
现场可编程门阵列(FPGA)
ZynqNet
并行计算
加速
面向云端FPGA的卷积神经网络加速器的设计及其调度
卷积神经网络
现场可编程门阵列
高层次综合
加速器
调度
基于FPGA的卷积神经网络硬件加速器设计空间探索研究
卷积神经网络硬件加速器
设计空间探索
细粒度流水线
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于FPGA的卷积神经网络加速器的设计与实现
来源期刊 复旦学报(自然科学版) 学科 工学
关键词 现场可编程门阵列 卷积神经网络 硬件加速 交通标志识别
年,卷(期) 2018,(2) 所属期刊栏目
研究方向 页码范围 236-242
页数 7页 分类号 TN403
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 来金梅 复旦大学专用集成电路与系统国家重点实验室 68 322 9.0 13.0
2 张榜 复旦大学专用集成电路与系统国家重点实验室 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (6)
同被引文献  (13)
二级引证文献  (5)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(5)
  • 引证文献(2)
  • 二级引证文献(3)
2020(4)
  • 引证文献(2)
  • 二级引证文献(2)
研究主题发展历程
节点文献
现场可编程门阵列
卷积神经网络
硬件加速
交通标志识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
复旦学报(自然科学版)
双月刊
0427-7104
31-1330/N
16开
上海市邯郸路220号
4-193
1955
chi
出版文献量(篇)
2978
总下载数(次)
5
总被引数(次)
22578
论文1v1指导