基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为实现仿人机器人快速稳定的行走,在满足有效参数组合的条件下,提出一种基于深度强化学习的步行参数训练算法以优化机器人步态.首先,从环境中捕获机器人步态模型参数作为DQN的输入;然后,用DQN来拟合机器人行走产生的状态-动作值函数;最后,通过动作选择策略选择当前机器人执行的步态动作,同时产生奖励函数达到更新DQN的目的.选择NAO仿真机器人为实验对象,在RoboCup3D仿真平台上进行实验,结果证明在此算法下,NAO仿人机器人可以获得稳定的双足步行.
推荐文章
基于主支撑腿运动优化的仿人机器人快速步态规划算法
仿人机器人
步态规划
动态步态
碰撞
面向仿人机器人自然步态规划的人体步行实验分析
仿人机器人
步态规划
自然步态
人体步态测试
仿蟹机器人步态分析与仿真
仿蟹机器人
步态
模拟仿真
仿蟹机器人步态分析与仿真
仿蟹机器人
步态
模拟仿真
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度Q网络的仿人机器人步态优化
来源期刊 计算机与现代化 学科 工学
关键词 仿人机器人 深度强化学习 DQN 步态优化 RoboCup3D
年,卷(期) 2019,(4) 所属期刊栏目 人工智能
研究方向 页码范围 47-51,58
页数 6页 分类号 TP242.6
字数 4710字 语种 中文
DOI 10.3969/j.issn.1006-2475.2019.04.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘惠义 河海大学计算机与信息学院 53 303 8.0 15.0
2 袁雯 河海大学计算机与信息学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (44)
共引文献  (97)
参考文献  (10)
节点文献
引证文献  (1)
同被引文献  (10)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(4)
  • 参考文献(0)
  • 二级参考文献(4)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(6)
  • 参考文献(2)
  • 二级参考文献(4)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
仿人机器人
深度强化学习
DQN
步态优化
RoboCup3D
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
总被引数(次)
56782
论文1v1指导