基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
显著性检测是近年来国内外计算机视觉领域研究的热点问题,在图像压缩、目标识别与跟踪、场景分类等领域具有广泛的应用.针对大多显著性检测方法只针对单个目标且鲁棒性不强这一问题,本文提出一种基于深度特征的显著性检测方法.首先,在多个尺度上对输入图像进行超像素分割,利用目标先验知识对预显著区域进行提取和优化.然后,采用卷积神经网络提取预选目标区域的深度特征.对高维深度特征进行主成分分析并计算显著性值.最后,提出一种改进的加权多层元胞自动机方法,对多尺度分割显著图进行融合优化,得到最终显著图.在公开标准数据集SED2和HKU IS的实验表明,与现有经典显著性检测方法相比,本文方法对多显著目标检测更准确.
推荐文章
基于HVS的多尺度显著性检测算法
人类视觉系统
多尺度
主成分分析
显著性检测
图像分析
基于Faster R-CNN的显著性目标检测方法
视觉显著性
目标检测
元胞自动机
超像素分割
基于双层多尺度神经网络的显著性对象检测算法
显著性对象检测
深度学习
深度卷积网络
条件随机场
多尺度融合背景与目标先验的显著性目标检测
视觉显著性
显著性目标检测
目标性
背景先验
空间优化
多尺度融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多尺度先验深度特征的多目标显著性检测方法
来源期刊 自动化学报 学科
关键词 显著性检测 卷积神经网络 过分割 深度特征 元胞自动机
年,卷(期) 2019,(11) 所属期刊栏目 论文与报告
研究方向 页码范围 2058-2070
页数 13页 分类号
字数 10006字 语种 中文
DOI 10.16383/j.aas.c170154
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王超 南京航空航天大学计算机科学与技术学院 26 206 7.0 13.0
2 李静 南京航空航天大学计算机科学与技术学院 38 133 7.0 9.0
3 梁大川 南京航空航天大学计算机科学与技术学院 4 9 2.0 3.0
4 李东民 南京航空航天大学计算机科学与技术学院 6 14 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (51)
共引文献  (148)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(6)
  • 参考文献(1)
  • 二级参考文献(5)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(12)
  • 参考文献(1)
  • 二级参考文献(11)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(4)
  • 参考文献(3)
  • 二级参考文献(1)
2016(6)
  • 参考文献(6)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
显著性检测
卷积神经网络
过分割
深度特征
元胞自动机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
论文1v1指导