基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 人脸年龄估计技术作为一种新兴的生物特征识别技术,已经成为计算机视觉领域的重要研究方向之一.随着深度学习的飞速发展,基于深度卷积神经网络的人脸年龄估计技术已成为研究热点.方法 本文以基于深度学习的真实年龄和表象年龄估计方法为研究对象,通过调研文献,分析了基于深度学习的人脸年龄估计方法的基本思想和特点,阐述其研究现状,总结关键技术及其局限性,对比了常见人脸年龄估计方法的性能,展望了未来的发展方向.结果 尽管基于深度学习的人脸年龄估计研究取得了巨大的进展,但非受限条件下年龄估计的效果仍不能满足实际需求,主要因为当前人脸年龄估计研究仍存在以下困难:1)引入人脸年龄估计的先验知识不足;2)缺少兼顾全局和局部细节的人脸年龄估计特征表达方法;3)现有人脸年龄估计数据集的限制;4)实际应用环境下的多尺度人脸年龄估计问题.结论 基于深度学习的人脸年龄估计技术已取得显著进展,但是由于实际应用场景复杂,容易导致人脸年龄估计效果不佳.对目前基于深度学习的人脸年龄估计技术进行全面综述,从而为研究者解决存在的问题提供便利.
推荐文章
图像场景识别中深度学习方法综述
场景识别
场景分类
深度学习
图像特征
计算机视觉
基于深度迁移学习的人脸识别方法研究
深度学习
人脸识别
迁移学习
不变性
区分性
基于深度学习的人脸图像年龄估计
深度神经网络
人脸图像
年龄估计
基于小波变换和NMF的人脸年龄估计
人脸图像
几何特征
纹理特征
小波变换
非负矩阵分解
年龄估计
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 人脸年龄估计的深度学习方法综述
来源期刊 中国图象图形学报 学科 工学
关键词 人脸年龄估计 深度学习 深度卷积神经网络 真实年龄 表象年龄
年,卷(期) 2019,(8) 所属期刊栏目 综述
研究方向 页码范围 1215-1230
页数 16页 分类号 TP301.6
字数 12728字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张珂 华北电力大学电子与通信工程系 29 165 7.0 11.0
2 郭玉荣 华北电力大学电子与通信工程系 3 3 1.0 1.0
3 王新胜 华北电力大学电子与通信工程系 2 2 1.0 1.0
4 苏昱坤 华北电力大学电子与通信工程系 1 2 1.0 1.0
5 何颖宣 华北电力大学电子与通信工程系 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (24)
参考文献  (23)
节点文献
引证文献  (2)
同被引文献  (2)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(8)
  • 参考文献(7)
  • 二级参考文献(1)
2018(5)
  • 参考文献(4)
  • 二级参考文献(1)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸年龄估计
深度学习
深度卷积神经网络
真实年龄
表象年龄
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导