基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
人工神经网络(Artificial neural networks,ANNs)与强化学习算法的结合显著增强了智能体的学习能力和效率.然而,这些算法需要消耗大量的计算资源,且难以硬件实现.而脉冲神经网络(Spiking neural networks,SNNs)使用脉冲信号来传递信息,具有能量效率高、仿生特性强等特点,且有利于进一步实现强化学习的硬件加速,增强嵌入式智能体的自主学习能力.不过,目前脉冲神经网络的学习和训练过程较为复杂,网络设计和实现方面存在较大挑战.本文通过引入人工突触的理想实现元件—忆阻器,提出了一种硬件友好的基于多层忆阻脉冲神经网络的强化学习算法.特别地,设计了用于数据-脉冲转换的脉冲神经元;通过改进脉冲时间依赖可塑性(Spiking-timing dependent plasticity,STDP)规则,使脉冲神经网络与强化学习算法有机结合,并设计了对应的忆阻神经突触;构建了可动态调整的网络结构,以提高网络的学习效率;最后,以Open AIGym中的CartPole-v0(倒立摆)和MountainCar-v0(小车爬坡)为例,通过实验仿真和对比分析,验证了方案的有效性和相对于传统强化学习方法的优势.
推荐文章
一种基于双忆阻的SOFM神经网络系统设计研究
SOFM神经网络
忆阻器
双忆阻结构
权值电压
多种连接模型的忆阻神经网络学习
忆阻器
突触可塑性
基因算法
拓扑变异
混合型忆阻神经网络
脉冲神经网络的忆阻器突触联想学习电路分析
忆阻器
神经元电路
SPICE仿真
Hebbian学习
联想学习
基于忆阻脉冲耦合神经网络的图像去噪
忆阻器
脉冲耦合神经网络
图像去噪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多层忆阻脉冲神经网络的强化学习及应用
来源期刊 自动化学报 学科
关键词 强化学习 脉冲神经网络 脉冲时间依赖可塑性规则 忆阻器
年,卷(期) 2019,(8) 所属期刊栏目 论文与报告
研究方向 页码范围 1536-1547
页数 12页 分类号
字数 9391字 语种 中文
DOI 10.16383/j.aas.c180685
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 段书凯 西南大学人工智能学院 62 480 14.0 19.0
3 胡小方 西南大学人工智能学院 7 59 2.0 7.0
5 张耀中 西南大学计算机与信息科学学院 1 0 0.0 0.0
8 周跃 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (46)
共引文献  (163)
参考文献  (28)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(2)
  • 二级参考文献(0)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(4)
  • 参考文献(2)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(6)
  • 参考文献(3)
  • 二级参考文献(3)
2008(7)
  • 参考文献(4)
  • 二级参考文献(3)
2009(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(6)
  • 参考文献(2)
  • 二级参考文献(4)
2016(7)
  • 参考文献(0)
  • 二级参考文献(7)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
强化学习
脉冲神经网络
脉冲时间依赖可塑性规则
忆阻器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
相关基金
中国博士后科学基金
英文译名:China Postdoctoral Science Foundation
官方网址:http://www.chinapostdoctor.org.cn/index.asp
项目类型:
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导