基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对特征点法的视觉里程计VO中光度、视点变化对特征点提取稳定性降低的不利影响,提出一种基于深度学习特征点法的单目VO方法.采用自监督深度学习网络训练得到DSP特征点检测器.首先使用亮度非线性逐点调整方法对训练图像进行光度调整;然后使用非极大值抑制方法剔除冗余DSP特征点,改进最邻近方法得到双向最邻近方法,解决特征点匹配问题;最后建立最小化重投影误差方程求解优化位姿及空间点参数.在Hpatches、Visual Odometry数据集上进行验证,实验结果表明:DSP特征点检测器增强了特征匹配对光度、视点变化的鲁棒性;无后端优化的条件下,本方法定位均方根误差比ORB方法明显降低,且保证了系统实时性,为特征点法的VO提供新的解决思路.
推荐文章
基于RANSAC的奇异值剔除的单目视觉里程计
机器人定位
视觉里程计
特征提纯
机器视觉
SURF
RANSAC
视觉里程计技术综述
视觉里程计
自主移动机器人
单目视觉里程计
立体视觉里程计
鲁棒性
实时性
精确性
视觉里程计算法研究综述
机器视觉
视觉里程计
位姿估计
视觉导航
移动机器人
深度学习
基于点特征的单目视觉里程计实现
特征点检测
自动初始化
关键帧选取
视觉里程计
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习特征点法的单目视觉里程计
来源期刊 计算机工程与科学 学科 工学
关键词 视觉里程计 深度学习 亮度非线性逐点调整 特征匹配 重投影误差
年,卷(期) 2020,(1) 所属期刊栏目 图形与图像
研究方向 页码范围 117-124
页数 8页 分类号 TP391.9
字数 4984字 语种 中文
DOI 10.3969/j.issn.1007-130X.2020.01.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘敏 湖北工业大学电气与电子工程学院 24 54 5.0 7.0
2 曾春艳 湖北工业大学电气与电子工程学院 17 18 3.0 3.0
3 王娟 湖北工业大学电气与电子工程学院 16 17 2.0 4.0
4 金靖熠 湖北工业大学电气与电子工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (57)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
视觉里程计
深度学习
亮度非线性逐点调整
特征匹配
重投影误差
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
相关基金
国家留学基金
英文译名:
官方网址:http://www.csc.edu.cn/gb/
项目类型:
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
湖北省自然科学基金
英文译名:Natural Science Foundation of Hubei Province
官方网址:http://www.shiyanhospital.com/my/art/viewarticle.asp?id=79
项目类型:重点项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导