钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
一般工业技术期刊
\
中国图象图形学报期刊
\
密集连接卷积网络图像去模糊
密集连接卷积网络图像去模糊
作者:
吴迪
赵洪田
郑世宝
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
运动模糊
盲去模糊
生成对抗网络(GAN)
密集连接卷积网络(DenseNets)
感知损失
全卷积网络(FCN)
摘要:
目的 非均匀盲去运动模糊是图像处理和计算机视觉中的基础课题之一.传统去模糊算法有处理模糊种类单一、耗费时间两大缺点,且一直未能有效解决.随着神经网络在图像生成领域的出色表现,本文把去运动模糊视为图像生成的一种特殊问题,提出一种基于神经网络的快速去模糊方法.方法 首先,将图像分类方向表现优异的密集连接卷积网络(dense connected convolutional network,DenseNets)应用到去模糊领域,该网络能充分利用中间层的有用信息.在损失函数方面,采用更符合去模糊目的的感知损失(perceptual loss),保证生成图像和清晰图像在内容上的一致性.采用生成对抗网络(generative adversarial network,GAN),使生成的图像在感官上与清晰图像更加接近.结果 通过测试生成图像相对于清晰图像的峰值信噪比(peak signal to noise ratio,PSNR),结构相似性(structural similarity,SSIM)和复原时间来评价算法性能的优劣.相比DeblurGAN (blind motion deblurring usingconditional adversarial networks),本文算法在GOPRO测试集上的平均PSNR提高了0.91,复原时间缩短了0.32 s,能成功恢复出因运动模糊而丢失的细节信息.在Kohler数据集上的性能也优于当前主流算法,能够处理不同的模糊核,鲁棒性强.结论 本文算法网络结构简单,复原效果好,生成图像的速度也明显快于其他方法.同时,该算法鲁棒性强,适合处理各种因运动模糊而导致的图像退化问题.
暂无资源
收藏
引用
分享
推荐文章
基于密集连接空洞卷积神经网络的青藏地区云雪图像分类
云雪图像识别
特征提取
跨层连接
空洞卷积
基于正则化方法的图像盲去模糊
图像去模糊
正则化方法
标准化稀疏先验
模糊核估计
双边滤波器
冲击滤波器
TV正则化
用于图像超分辨的密集跳跃注意连接网络
深度学习
图像超分辨
密集连接
注意力机制
高应变率变形图像去模糊及数字图像相关测量
动态变形
点扩散函数
数字图像相关
图像修复
霍普金森杆
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
密集连接卷积网络图像去模糊
来源期刊
中国图象图形学报
学科
工学
关键词
运动模糊
盲去模糊
生成对抗网络(GAN)
密集连接卷积网络(DenseNets)
感知损失
全卷积网络(FCN)
年,卷(期)
2020,(5)
所属期刊栏目
图像处理和编码
研究方向
页码范围
890-899
页数
10页
分类号
TP183
字数
6684字
语种
中文
DOI
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
吴迪
上海交通大学电子信息与电气工程学院
53
857
16.0
28.0
2
郑世宝
上海交通大学电子信息与电气工程学院
73
705
13.0
24.0
3
赵洪田
上海交通大学电子信息与电气工程学院
1
0
0.0
0.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(16)
共引文献
(5)
参考文献
(4)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1972(1)
参考文献(0)
二级参考文献(1)
2004(2)
参考文献(0)
二级参考文献(2)
2005(1)
参考文献(0)
二级参考文献(1)
2006(2)
参考文献(1)
二级参考文献(1)
2007(1)
参考文献(0)
二级参考文献(1)
2008(2)
参考文献(0)
二级参考文献(2)
2009(2)
参考文献(0)
二级参考文献(2)
2010(2)
参考文献(0)
二级参考文献(2)
2012(1)
参考文献(1)
二级参考文献(0)
2013(3)
参考文献(1)
二级参考文献(2)
2016(2)
参考文献(0)
二级参考文献(2)
2017(1)
参考文献(1)
二级参考文献(0)
2020(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
运动模糊
盲去模糊
生成对抗网络(GAN)
密集连接卷积网络(DenseNets)
感知损失
全卷积网络(FCN)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
主办单位:
中国科学院遥感与数字地球研究所
中国图象图形学学会
北京应用物理与计算数学研究所
出版周期:
月刊
ISSN:
1006-8961
CN:
11-3758/TB
开本:
大16开
出版地:
北京9718信箱
邮发代号:
82-831
创刊时间:
1996
语种:
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
期刊文献
相关文献
1.
基于密集连接空洞卷积神经网络的青藏地区云雪图像分类
2.
基于正则化方法的图像盲去模糊
3.
用于图像超分辨的密集跳跃注意连接网络
4.
高应变率变形图像去模糊及数字图像相关测量
5.
重叠组稀疏广义全变分图像去模糊方法
6.
基于RGB通道自适应的维纳滤波图像去模糊研究
7.
静态背景中目标运动去模糊
8.
基于稀疏先验和边缘约束的图像盲去模糊算法
9.
基于卷积神经网络图像识别的智能电子秤系统
10.
基于微分压缩感知的图像去模糊技术研究
11.
基于非凸lp范数和G-范数的图像去模糊模型
12.
基于广义规范化稀疏模型的图像盲去模糊算法
13.
改进的广义高斯分布与非局部均值图像去模糊
14.
基于EM算法的眼底OCT图像反卷积去模糊技术
15.
基于调和模型的快速神经网络图像复原算法
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
中国图象图形学报2022
中国图象图形学报2021
中国图象图形学报2020
中国图象图形学报2019
中国图象图形学报2018
中国图象图形学报2017
中国图象图形学报2016
中国图象图形学报2015
中国图象图形学报2014
中国图象图形学报2013
中国图象图形学报2012
中国图象图形学报2011
中国图象图形学报2010
中国图象图形学报2009
中国图象图形学报2008
中国图象图形学报2007
中国图象图形学报2006
中国图象图形学报2005
中国图象图形学报2004
中国图象图形学报2003
中国图象图形学报2002
中国图象图形学报2001
中国图象图形学报2000
中国图象图形学报1999
中国图象图形学报1998
中国图象图形学报2020年第9期
中国图象图形学报2020年第8期
中国图象图形学报2020年第7期
中国图象图形学报2020年第6期
中国图象图形学报2020年第5期
中国图象图形学报2020年第4期
中国图象图形学报2020年第3期
中国图象图形学报2020年第2期
中国图象图形学报2020年第12期
中国图象图形学报2020年第11期
中国图象图形学报2020年第10期
中国图象图形学报2020年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号