基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 非均匀盲去运动模糊是图像处理和计算机视觉中的基础课题之一.传统去模糊算法有处理模糊种类单一、耗费时间两大缺点,且一直未能有效解决.随着神经网络在图像生成领域的出色表现,本文把去运动模糊视为图像生成的一种特殊问题,提出一种基于神经网络的快速去模糊方法.方法 首先,将图像分类方向表现优异的密集连接卷积网络(dense connected convolutional network,DenseNets)应用到去模糊领域,该网络能充分利用中间层的有用信息.在损失函数方面,采用更符合去模糊目的的感知损失(perceptual loss),保证生成图像和清晰图像在内容上的一致性.采用生成对抗网络(generative adversarial network,GAN),使生成的图像在感官上与清晰图像更加接近.结果 通过测试生成图像相对于清晰图像的峰值信噪比(peak signal to noise ratio,PSNR),结构相似性(structural similarity,SSIM)和复原时间来评价算法性能的优劣.相比DeblurGAN (blind motion deblurring usingconditional adversarial networks),本文算法在GOPRO测试集上的平均PSNR提高了0.91,复原时间缩短了0.32 s,能成功恢复出因运动模糊而丢失的细节信息.在Kohler数据集上的性能也优于当前主流算法,能够处理不同的模糊核,鲁棒性强.结论 本文算法网络结构简单,复原效果好,生成图像的速度也明显快于其他方法.同时,该算法鲁棒性强,适合处理各种因运动模糊而导致的图像退化问题.
推荐文章
基于密集连接空洞卷积神经网络的青藏地区云雪图像分类
云雪图像识别
特征提取
跨层连接
空洞卷积
基于正则化方法的图像盲去模糊
图像去模糊
正则化方法
标准化稀疏先验
模糊核估计
双边滤波器
冲击滤波器
TV正则化
用于图像超分辨的密集跳跃注意连接网络
深度学习
图像超分辨
密集连接
注意力机制
高应变率变形图像去模糊及数字图像相关测量
动态变形
点扩散函数
数字图像相关
图像修复
霍普金森杆
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 密集连接卷积网络图像去模糊
来源期刊 中国图象图形学报 学科 工学
关键词 运动模糊 盲去模糊 生成对抗网络(GAN) 密集连接卷积网络(DenseNets) 感知损失 全卷积网络(FCN)
年,卷(期) 2020,(5) 所属期刊栏目 图像处理和编码
研究方向 页码范围 890-899
页数 10页 分类号 TP183
字数 6684字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴迪 上海交通大学电子信息与电气工程学院 53 857 16.0 28.0
2 郑世宝 上海交通大学电子信息与电气工程学院 73 705 13.0 24.0
3 赵洪田 上海交通大学电子信息与电气工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (5)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
运动模糊
盲去模糊
生成对抗网络(GAN)
密集连接卷积网络(DenseNets)
感知损失
全卷积网络(FCN)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导