基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为保留脑电(Electroencephalogram,EEG)空间信息的同时充分挖掘EEG时序相关信息,提出了一种三维卷积神经网络(3-Dimensional Convolutional Neural Networks,3D-CNN)结合双向长短期记忆神经网络(Bidirectional Long Short-term Memory Neural Networks,BLSTM)的混合神经网络(3DCNN-BLSTM);为验证该模型的分类性能,在DEAP数据集和SEED数据集上进行情感识别实验.实验结果表明3DCNN-BLSTM模型能有效学习EEG多通道间的相关性与时间维度信息且提高了情感分类性能:在DEAP数据集的二分类实验中,唤醒度和效价的情感识别平均准确率分别为93.56%和93.21%;在DEAP数据集的四分类实验中,情感识别平均准确率为90.97%;在SEED数据集的三分类实验中,情感识别平均准确率为98.90%.
推荐文章
基于Elman神经网络的语音情感识别应用研究
语音清感识别
Elman网络
BP网络
MFCC
基于集成卷积神经网络的脑电情感识别
脑电信号
情感识别
卷积神经网络
集成学习
基于神经网络集成的睡眠脑电分期研究
睡眠脑电(EEG)
BP神经网络
AR参数
Bagging算法
集成
基于小波和神经网络的脑电智能诊断研究
脑电图诊断
数字信号处理
小波分析
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于混合神经网络的脑电情感识别
来源期刊 华南师范大学学报(自然科学版) 学科 工学
关键词 脑电 情感识别 3D-CNN BLSTM 混合神经网络
年,卷(期) 2021,(1) 所属期刊栏目 计算机科学与软件工程
研究方向 页码范围 109-118
页数 10页 分类号 TP391
字数 语种 中文
DOI 10.6054/j.jscnun.2021017
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (5)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
脑电
情感识别
3D-CNN
BLSTM
混合神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华南师范大学学报(自然科学版)
双月刊
1000-5463
44-1138/N
16开
广州市石牌华南师范大学
1956
chi
出版文献量(篇)
2704
总下载数(次)
9
总被引数(次)
15292
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导