基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
测试优化选择是测试性设计至关重要的一个步骤,主要针对测试不可靠条件下的测试优化选择问题进行了研究.首先将该问题还原为多目标问题来分析,在此基础上以测试数量、测试成本、虚警率为目标,故障检测率、隔离率为约束条件建立了问题的数学模型;然后以贝叶斯网络测试性模型为基础,利用提出的MOPSO-NSGA2算法求解该问题;最后利用所提算法对某导弹机载无线电高度表开展测试优化选择设计,并与MOPSO算法、NSGA-2算法进行对比,验证了方法的有效性与实用性.
推荐文章
基于粒子群优化算法的测试选择优化方法研究
诊断设计
测试选择
粒子群优化算法
N-P完全
集合覆盖
基于正交设计 NSGA-Ⅱ算法的制动器多目标优化
制动器
多目标优化
改进算法
正交设计
基于改进NSGA-Ⅱ算法的微电网多目标优化研究
微电网
多目标优化
信息熵
Pareto最优解集
基于改进的NSGA-Ⅱ多目标优化方法研究
降维
搜索空间
遗传算子
神经网络
多目标优化
非支配解
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于MOPSO-NSGA2算法的测试优化选择方法
来源期刊 电光与控制 学科
关键词 测试性设计 测试优化选择 MOPSO算法 NSGA-2算法
年,卷(期) 2021,(9) 所属期刊栏目 工程应用|Engineering Application
研究方向 页码范围 89-93
页数 5页 分类号 TP206
字数 语种 中文
DOI 10.3969/j.issn.1671-637X.2021.09.019
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (117)
共引文献  (43)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(7)
  • 参考文献(0)
  • 二级参考文献(7)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(14)
  • 参考文献(1)
  • 二级参考文献(13)
2009(15)
  • 参考文献(0)
  • 二级参考文献(15)
2010(9)
  • 参考文献(2)
  • 二级参考文献(7)
2011(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(11)
  • 参考文献(0)
  • 二级参考文献(11)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(3)
  • 参考文献(1)
  • 二级参考文献(2)
2019(2)
  • 参考文献(1)
  • 二级参考文献(1)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
测试性设计
测试优化选择
MOPSO算法
NSGA-2算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电光与控制
月刊
1671-637X
41-1227/TN
大16开
河南省洛阳市017信箱16分箱
1970
chi
出版文献量(篇)
4517
总下载数(次)
11
总被引数(次)
24286
论文1v1指导