基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
深度图像的高级特征提取是3维视觉一个重要研究领域.为了提高对大量离散3维数据的处理速度,简化算子结构,本文提出一种新的方法,将单目或多目结构光传感器采集的离散3维数据点云转换成深度图像形式,使z方向代表深度,并实现x、y方向数据的规则网格采样.接着提出一种深度图像分割算法,先对整幅图像进行边缘提取,得到阶跃和褶皱两种边缘,采用主成分分析法(PCA)通过计算欧氏距离得到面的法线方向和方向间的夹角.经过两类传感器采集到的大量图像实验证明,该算法明显优于单纯的边缘或者区域算法,具有良好的抗噪声性能,满足并行在线测量的要求,并且不受物体形状的约束,可以应用于3D模型重建、机器人自主导航、逆向工程、文物数字化等多个3维视觉领域.
推荐文章
颜色指导的深度图像升采样算法的对比性研究
深度图像
高阶马尔科夫随机场
对比性研究
基于引导采样的Kinect深度图修补算法
深度图
空洞噪声
聚类
噪声修补
均方误差
Kinect深度图像修复算法
深度图像修复
Kinect标定
时间相关性
空间相关性
颜色一致性约束
双边滤波器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于网格采样的深度图像表面特征提取算法
来源期刊 中国图象图形学报 学科 工学
关键词 网格化 深度图像分割 特征提取 主成分分析
年,卷(期) 2007,(6) 所属期刊栏目 图像理解和计算机视觉
研究方向 页码范围 1091-1097
页数 7页 分类号 TP391.4
字数 5158字 语种 中文
DOI 10.3969/j.issn.1006-8961.2007.06.021
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵慧洁 北京航空航天大学仪器科学与光电工程学院 99 856 16.0 25.0
2 孙晓兰 北京航空航天大学仪器科学与光电工程学院 1 11 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (11)
同被引文献  (16)
二级引证文献  (22)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1988(2)
  • 参考文献(2)
  • 二级参考文献(0)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(2)
  • 引证文献(2)
  • 二级引证文献(0)
2010(4)
  • 引证文献(2)
  • 二级引证文献(2)
2012(1)
  • 引证文献(0)
  • 二级引证文献(1)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(4)
  • 引证文献(1)
  • 二级引证文献(3)
2015(6)
  • 引证文献(1)
  • 二级引证文献(5)
2016(3)
  • 引证文献(0)
  • 二级引证文献(3)
2017(3)
  • 引证文献(2)
  • 二级引证文献(1)
2018(4)
  • 引证文献(1)
  • 二级引证文献(3)
2019(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
网格化
深度图像分割
特征提取
主成分分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导